10 resultados para Fiber-type Composition
em Aston University Research Archive
Resumo:
We examine the impact of the fiber type and dispersion management on the performance of a 16 × 40 Gb/s dense wavelength-division-multiplexing nonreturn-to-zero transmission system. The transmission line is composed of G.652 or G.655 fiber with periodic dispersion compensation and hybrid Raman erbium-doped fiber amplifier amplification.
Resumo:
We examine impact of the fiber type and nonlinear management over the performance of a 16x40Gb/s DWDM NRZ transmission system. The line is constituted of 3x100km of G.652 or G.655 fiber with hybrid Raman-EDFA amplification.
Resumo:
We examined satellite cell content and the activity of satellite cell progeny in tibialis anterior muscles of young (15 weeks) and aging (101 weeks) Brown Norway (BN) rats, after they were exposed for 50 days to a standardized and highly reproducible regime of chronic low-frequency electrical stimulation. Chronic low-frequency electrical stimulation was successful in inducing fast-to-slow fiber-type transformation, characterized by a 2.3-fold increase in the proportion of IIA fibers and fourfold and sevenfold decreases in the proportion of IID/X and IIB fibers in both young and aging BN rats. These changes were accompanied by a twofold increase in the satellite cell content in both the young and aging groups; satellite cell content reached a level that was significantly higher in the young group (p < .04). The total muscle precursor cell content (i.e., satellite cells plus progeny), however, did not differ between groups, because there was a greater number of satellite cell progeny passing through the proliferative and differentiative compartments of the aging group. The resulting 1.5-fold increase in myonuclear content was similar in the young and aging groups. We conclude that satellite cells and satellite cell progeny of aging BN rats possess an unaltered capacity to contribute to the adaptive response.
Resumo:
The MODE-GAP project was established to identify the optimum fiber type for use beyond the capacity crunch. This paper will review some of the key drivers behind the project and analyze the key limits and potential improvements © 2013 IEEE.
Resumo:
The sensitivities of type I and IIA fibre Bragg gratings written to different reflectivities in SMF-28 and B/Ge fibres to ionizing radiation up to 0.54MGy are investigated. The Bragg wavelength shows a small and rapid increase at the start of irradiation followed by either a plateau (type I) or a decrease (type IIA).
Resumo:
Although fiber Bragg gratings (FBGs) have been widely used as advanced optical sensors, the cross-sensitivity between temperature and strain has complicated independent measurement procedures for these two measurands. We report here, for the first time to our knowledge, the results of a systematic investigation of the dependence of both temperature and strain sensitivities on the grating type, including the well-known Type I, Type IIA, and a new type which we have designated Type IA, using both hydrogen-free and hydrogenated B/Ge codoped fibers. We have identified distinct sensitivity characteristics for each grating type, and we have utilised them to implement a novel dual-grating, dual-parameter sensor device with performance superior to that of previously reported grating-based structures.
Resumo:
The sensitivities of type I and IIA fibre Bragg gratings written to different reflectivities in SMF-28 and B/Ge fibres to ionizing radiation up to 0.54MGy are investigated. The Bragg wavelength shows a small and rapid increase at the start of irradiation followed by either a plateau (type I) or a decrease (type IIA).
Resumo:
Type IA fiber gratings have unusual physical properties compared with other grating types. We compare with performance characteristics of Type IA and Type I Bragg gratings exposed to the effects of Co60 gamma-irradiation. A Bragg peak shift of 190 pm was observed for Type IA gratings written in Fibercore PS-1250/1500 photosensitive fiber at a radiation dose of 116 kGy. This is the largest wavelength shift recorded to date under radiation exposure. The Type IA and Type I gratings show different kinetics under radiation and during post-radiation annealing; this can be exploited for the design of a grating based dosimetry system. © 2012 SPIE.
Resumo:
Aims: Obesity and Type 2 diabetes are associated with accelerated ageing. The underlying mechanisms behind this, however, are poorly understood. In this study, we investigated the association between circulating irisin - a novel my okine involved in energy regulation - and telomere length (TL) (a marker of aging) in healthy individuals and individuals with Type 2 diabetes. Methods: Eighty-two healthy people and 67 subjects with Type 2 diabetes were recruited to this cross-sectional study. Anthropometric measurements including body composition measured by biompedance were recorded. Plasma irisin was measured by ELISA on a fasted blood sample. Relative TL was determined using real-time PCR. Associations between anthropometric measures and irisin and TL were explored using Pearson’s bivariate correlations. Multiple regression was used to explore all the significant predictors of TL using backward elimination. Results: In healthy individuals chronological age was a strong negative predictor of TL (=0.552, p < 0.001). Multiple regression analysis using backward elimination (excluding age) revealed the greater relative TL could be predicted by greater total muscle mass(b = 0.046, p = 0.001), less visceral fat (b = =0.183, p < 0.001)and higher plasma irisin levels (b = 0.01, p = 0.027). There were no significant associations between chronological age, plasmairisin, anthropometric measures and TL in patients with Type 2diabetes (p > 0.1). Conclusion: These data support the view that body composition and plasma irisin may have a role in modulation of energy balance and the aging process in healthy individuals. This relationship is altered in individuals with Type 2 diabetes.
Resumo:
Using excessively tilted fiber grating (Ex-TFG) inscribed in standard single mode fiber, we developed a novel label-free immunoassay for specific detection of porcine circovirus type 2 (PCV2), which is a minim animal virus. Staphylococcal protein A (SPA) was used to modify the silanized fiber surface thus forming a SPA layer, which would greatly enhance the proportion of anti-PCV2 monoclonal antibody (MAb) bioactivity, thus improving the effectiveness of specific adsorption and binding events between anti-PCV2 MAbs and PCV2 antigens. Immunoassay experiments were carried out by monitoring the resonance wavelength shift of the proposed sensor under different PCV2 titer levels. Anti-PCV2 MAbs were thoroughly dissociated from the SPA layer by treatment with urea, and recombined to the SPA layer on the sensor surface for repeated immunoassay of PCV2. The specificity of the immunosensor was inspected by detecting porcine reproductive and respiratory syndrome virus (PRRSV) first, and PCV2 subsequently. The results showed a limit of detection (LOD) for the PCV2 immunosensor of ~9.371TCID50/mL, for a saturation value of ~4.801×103TCID50/mL, with good repeatability and excellent specificity.