12 resultados para Fiber reinforced epoxy resins
em Aston University Research Archive
Resumo:
The diglycidyl ether of tetrabromobisphenol A, the diglycidyl ether of bisphenol A and their mixture was cured by 4,4'-diaminodiphenyl methane. The pyrolysis of the obtained epoxy resins was studied by TG, DSC, TG/FTIR as well as FTIR characterization of pyrolysis residues. The gaseous and high boiling pyrolysis products were collected, characterized by GC/MS and their formation is discussed. The brominated epoxy resins are thermally less stable than the non-brominated ones. This effect is caused by the amine-containing hardener. The degradation initiation reaction is associated with the formation of hydrogen bromide which further destabilizes the epoxy network. The effect of the curing agent can be used in recycling of epoxy resins to separate brominated pyrolysis products from non-brominated ones.
Resumo:
Triggered biodegradable composites made entirely from renewable resources are urgently sought after to improve material recyclability or be able to divert materials from waste streams. Many biobased polymers and natural fibers usually display poor interfacial adhesion when combined in a composite material. Here we propose a way to modify the surfaces of natural fibers by utilizing bacteria (Acetobacter xylinum) to deposit nanosized bacterial cellulose around natural fibers, which enhances their adhesion to renewable polymers. This paper describes the process of modifying large quantities of natural fibers with bacterial cellulose through their use as substrates for bacteria during fermentation. The modified fibers were characterized by scanning electron microscopy, single fiber tensile tests, X-ray photoelectron spectroscopy, and inverse gas chromatography to determine their surface and mechanical properties. The practical adhesion between the modified fibers and the renewable polymers cellulose acetate butyrate and poly(L-lactic acid) was quantified using the single fiber pullout test. © 2008 American Chemical Society.
Resumo:
The interaction of microorganisms with glass-reinforced polyester resins(GRP), both under laboratory and simulated operating conditions, has been examined following reports of severl! fungal biodeterioration. Although GRP was not previously associated with substantial microbial growth, small amounts of microbial activity would pose problems for products associated with comestible materials. The microbiology of the raw materials was investigated, two ingredients were supportive to microbial populations whilst five materials were biostatic or inhibitory in their action. Production laminate was not susceptible to microbial deterioration or inhibitory to microbes. Incorporation of zinc stearate, one of the supportive ingredients, at 300% manufacturing level or drastic undercuring produced laminate capable of supporting microbial growth but only after a non-biotic stage of degradation. Study of the long-term population dynamics of cisterns of GRP and competitive materials under conditions simulating in-service conditions, monitoring microbial numbers within the experimental vessels and comparing with the populations of the supply water, suggests that the performance of GRP cisterns is slightly superior to conventional competitive materials. An investigation of the biological performance of GRP cisterns in an isolated area of known microbiological hazard was conducted. Severe biodeterioration had been experienced with Preform GRP articles moulded using different production techniques, but substitution of current GRP articles resulted in no recurrence of the problem. All attempts to establish the fungal isolate responsible for the phenomena in cisterns under controlled conditions failed. Scanning Electron Microscopy of GRP surfaces showed that although differences exist between current and Preform laminates, these could not satisfactorily explain the differences in service behaviour. These results and the results of the British Plastics Federation Expert Working Group interlaboratory study are discussed in relation to the original report of gross fungal biodeterioration and, to the design of future testing programmes for the products of industrial concerns.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
A 1.2 µm (height) × 125 µm (depth) × 500 µm (length) microslot along a fiber Bragg grating was engraved across the optical fiber by femtosecond laser patterning and chemical etching. By filling epoxy in the slot and subsequent UV curing, a hybrid waveguide grating structure with a polymer core and glass cladding was fabricated. The obtained device is highly thermally responsive with linear coefficient of 211 pm/°C.
Resumo:
Different types of microstructures including microchannels and microslots were made in optical fibers using femtosecond laser inscription and chemical etching. Integrated with UV-inscribed fiber Bragg gratings, these microstructures have miniature, robustness and high sensitivity features and have been used to implement novel devices for various sensing applications. The fiber microchannels were used to detect the refractive index change of liquid presenting sensitivities up to 7.4 nm/refractive index unit (RIU) and 166.7 dB/RIU based on wavelength and power detection, respectively. A microslot-in-fiber based liquid core waveguide as a refractometer has been proposed and the device was used to measure refractive index, and a sensitivity up to 945 nm/RIU (10-6/pm) was obtained. By filling epoxy in the microslot and subsequent UV light curing, a hybrid waveguide grating structure with polymer core and glass cladding was fabricated. The obtained device was highly thermal responsive, demonstrating a linear coefficient of 211 pm/°C.
Resumo:
A 1.2 µm (height) × 125 µm (depth) × 500 µm (length) microslot along a fiber Bragg grating was engraved across the optical fiber by femtosecond laser patterning and chemical etching. By filling epoxy in the slot and subsequent UV curing, a hybrid waveguide grating structure with a polymer core and glass cladding was fabricated. The obtained device is highly thermally responsive with linear coefficient of 211 pm/°C.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Resumo:
Different types of microstructures including microchannels and microslots were made in optical fibers using femtosecond laser inscription and chemical etching. Integrated with UV-inscribed fiber Bragg gratings, these microstructures have miniature, robustness and high sensitivity features and have been used to implement novel devices for various sensing applications. The fiber microchannels were used to detect the refractive index change of liquid presenting sensitivities up to 7.4 nm/refractive index unit (RIU) and 166.7 dB/RIU based on wavelength and power detection, respectively. A microslot-in-fiber based liquid core waveguide as a refractometer has been proposed and the device was used to measure refractive index, and a sensitivity up to 945 nm/RIU (10-6/pm) was obtained. By filling epoxy in the microslot and subsequent UV light curing, a hybrid waveguide grating structure with polymer core and glass cladding was fabricated. The obtained device was highly thermal responsive, demonstrating a linear coefficient of 211 pm/°C.
Resumo:
A 1.2(height)×125(depth)×500(length) micro-slot was engraved along a fiber Bragg grating by chemically assisted femtosecond laser processing. By filling epoxy and UV-curing, waveguide with plastic-core and silica-cladding was created, presenting high thermal responding coefficient of 211pm/°C.
Novel fiber Bragg grating sensor implemented in a polymer-core/silica- cladding hybrid optical fiber
Resumo:
A polymer-core/silica-cladding hybrid optical fiber is implemented by filling a capillary with UV-curable epoxy and a following UV-laser scanning exposure. A fiber Bragg grating is successfully inscribed in parallel using a phase mask. The experimental results show a reduced thermal response for the FBG and a theoretical analysis for such a hybrid optical fiber is performed which corroborates existing of a turning temperature for minimized thermal response. © 2014 SPIE.