8 resultados para Femtosecond Z-scan

em Aston University Research Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the operational parameters that are required to fabricate buried, microstructured waveguides in a z-cut lithium niobate crystal by the method of direct femtosecond laser inscription using a highrepetition-rate, chirped-pulse oscillator system. Refractive index contrasts as high as −0.0127 have been achieved for individual modification tracks. The results pave the way for developing microstructured WGs with low-loss operation across a wide spectral range, extending into the mid-infrared region up to the end of the transparency range of the host material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Material processing using high-intensity femtosecond (fs) laser pulses is a fast developing technology holding potential for direct writing of multi-dimensional optical structures in transparent media. In this work we re-examine nonlinear diffraction theory in context of fs laser processing of silica in sub-critical (input power less than the critical power of self-focusing) regime. We have applied well known theory, developed by Vlasov, Petrishev and Talanov, that gives analytical description of the evolution of a root-mean-square beam (not necessarily Gaussian) width RRMS(z) in medium with the Kerr nonlinearity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent results on direct femtosecond inscription of straight low-loss waveguides in borosilicate glass are presented. We also demonstrate lowest ever losses in curvilinear waveguides, which we use as main building blocks for integrated photonics circuits. Low-loss waveguides are of great importance to a variety of applications of integrated optics. We report on recent results of direct femtosecond fabrication of smooth low-loss waveguides in standard optical glass by means of femtosecond chirped-pulse oscillator only (Scientific XL, Femtolasers), operating at the repetition rate of 11 MHz, at the wavelength of 800 nm, with FWHM pulse duration of about 50 fs, and a spectral widths of 30 nm. The pulse energy on target was up to 70 nJ. In transverse inscription geometry, we inscribed waveguides at the depth from 10 to 300 micrometers beneath the surface in the samples of 50 x 50 x 1 mm dimensions made of pure BK7 borosilicate glass. The translation of the samples accomplished by 2D air-bearing stage (Aerotech) with sub-micrometer precision at a speed of up to 100 mm per second (hardware limit). Third direction of translation (Z-, along the inscribing beam or perpendicular to sample plane) allows truly 3D structures to be fabricated. The waveguides were characterized in terms of induced refractive index contrast, their dimensions and cross-sections, mode-field profiles, total insertion losses at both 633 nm and 1550 nm. There was almost no dependence on polarization for the laser inscription. The experimental conditions – depth, laser polarization, pulse energy, translation speed and others, were optimized for minimum insertion losses when coupled to a standard optical fibre SMF-28. We found coincidence of our optimal inscription conditions with recently published by other groups [1, 3] despite significant difference in practically all experimental parameters. Using optimum regime for straight waveguides fabrication, we inscribed a set of curvilinear tracks, which were arranged in a way to ensure the same propagation length (and thus losses) and coupling conditions, while radii of curvature varied from 3 to 10 mm. This allowed us to measure bend-losses – they less than or about 1 dB/cm at R=10 mm radius of curvature. We also demonstrate a possibility to fabricate periodical perturbations of the refractive index in such waveguides with the periods using the same set-up. We demonstrated periods of about 520 nm, which allowed us to fabricate wavelength-selective devices using the same set-up. This diversity as well as very short time for inscription (the optimum translation speed was found to be 40 mm/sec) makes our approach attractive for industrial applications, for example, in next generation high-speed telecom networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Material processing using high-intensity femtosecond (fs) laser pulses is a fast developing technology holding potential for direct writing of multi-dimensional optical structures in transparent media. In this work we re-examine nonlinear diffraction theory in context of fs laser processing of silica in sub-critical (input power less than the critical power of self-focusing) regime. We have applied well known theory, developed by Vlasov, Petrishev and Talanov, that gives analytical description of the evolution of a root-mean-square beam (not necessarily Gaussian) width RRMS(z) in medium with the Kerr nonlinearity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a practical approach to the numerical optimisation of the guiding properties of buried microstructured waveguides, which can be fabricated in a z-cut lithium niobate (LiNbO3) crystal by the method of direct femtosecond laser inscription. We demonstrate the possibility to extend the spectral range of low-loss operation of the waveguide into the mid-infrared region beyond 3um.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an optimization procedure to improve the propagation properties of the depressed cladding, buried micro-structured waveguides formed in a z-cut lithium niobate (LN) crystal by high repetition rate femtosecond (fs) laser writing. It is shown that the propagation wavelength for which the confinement losses of ordinary (O) and extraordinary ordinary (E) polarizations are below 1 dB/cm can be optimized beyond 3 micro meter for hexagonal WG structures with seven rings of tracks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the fabrication of a refractive index (RI) sensor based on a liquid core fibre Bragg grating (FBG). A micro-slot FBG was created in standard telecom optical fibre employing the tightly focused femtosecond laser inscription aided chemical etching. A micro-slot with dimensions of 5.74(h) × 125(w) × 1388.72(l) μm was engraved across the whole fibre and along 1mm long FBG which gives advantage of a relatively robust liquid core waveguide. The device performed the refractive index sensitivity up to about 742.72 nm/RIU. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).