5 resultados para Feature learning

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon. Preferences on expectations of sentiment labels of those lexicon words are expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than exiting weakly-supervised sentiment classification methods despite using no labeled documents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, learning word vector representations has attracted much interest in Natural Language Processing. Word representations or embeddings learned using unsupervised methods help addressing the problem of traditional bag-of-word approaches which fail to capture contextual semantics. In this paper we go beyond the vector representations at the word level and propose a novel framework that learns higher-level feature representations of n-grams, phrases and sentences using a deep neural network built from stacked Convolutional Restricted Boltzmann Machines (CRBMs). These representations have been shown to map syntactically and semantically related n-grams to closeby locations in the hidden feature space. We have experimented to additionally incorporate these higher-level features into supervised classifier training for two sentiment analysis tasks: subjectivity classification and sentiment classification. Our results have demonstrated the success of our proposed framework with 4% improvement in accuracy observed for subjectivity classification and improved the results achieved for sentiment classification over models trained without our higher level features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most machine-learning algorithms are designed for datasets with features of a single type whereas very little attention has been given to datasets with mixed-type features. We recently proposed a model to handle mixed types with a probabilistic latent variable formalism. This proposed model describes the data by type-specific distributions that are conditionally independent given the latent space and is called generalised generative topographic mapping (GGTM). It has often been observed that visualisations of high-dimensional datasets can be poor in the presence of noisy features. In this paper we therefore propose to extend the GGTM to estimate feature saliency values (GGTMFS) as an integrated part of the parameter learning process with an expectation-maximisation (EM) algorithm. The efficacy of the proposed GGTMFS model is demonstrated both for synthetic and real datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on an unprecedented need of stimulating creative capacities towards entrepreneurship to university students and young researchers, this paper introduces and analyses a smart learning ecosystem for encouraging teaching and learning on creative thinking as a distinct feature to be taught and learnt in universities. The paper introduces a mashed-up authoring architecture for designing lesson-plans and games with visual learning mechanics for creativity learning. The design process is facilitated by creativity pathways discerned across components. Participatory learning, networking and capacity building is a key aspect of the architecture, extending the learning experience and context from the classroom to outdoor (co-authoring of creative pathways by students, teachers and real-world entrepreneurs) and personal spaces. We anticipate that the smart learning ecosystem will be empirically evaluated and validated in future iterations for exploring the benefits of using games for enhancing creative mindsets, unlocking the imagination that lies within, practiced and transferred to multiple academic tribes and territories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In ensuring the quality of learning and teaching in Higher Education, self-evaluation is an important component of the process. An example would be the approach taken within the CDIO community whereby self-evaluation against the CDIO standards is part of the quality assurance process. Eight European universities (Reykjavik University, Iceland; Turku University of Applied Sciences, Finland; Aarhus University, Denmark; Helsinki Metropolia University of Applied Sciences, Finland; Ume? University, Sweden; Telecom Bretagne, France; Aston University, United Kingdom; Queens University Belfast, United Kingdom) are engaged in an EU funded Erasmus + project that is exploring the quality assurance process associated with active learning. The development of a new self-evaluation framework that feeds into a ?Marketplace? where participating institutions can be paired up and then engage in peer evaluations and sharing around each institutions approach to and implementation of active learning. All of the partner institutions are engaged in the application of CDIO within their engineering programmes and this has provided a common starting point for the partnership to form and the project to be developed. Although the initial focus will be CDIO, the longer term aim is that the approach could be of value beyond CDIO and within other disciplines. The focus of this paper is the process by which the self-evaluation framework is being developed and the form of the draft framework. In today?s Higher Education environment, the need to comply with Quality Assurance standards is an ever present feature of programme development and review. When engaging in a project that spans several countries, the wealth of applicable standards and guidelines is significant. In working towards the development of a robust Self Evaluation Framework for this project, the project team decided to take a wide view of the available resources to ensure a full consideration of different requirements and practices. The approach to developing the framework considered: a) institutional standards and processes b) national standards and processes e.g. QAA in the UK c) documents relating to regional / global accreditation schemes e.g. ABET d) requirements / guidelines relating to particular learning and teaching frameworks e.g. CDIO. The resulting draft self-evaluation framework is to be implemented within the project team to start with to support the initial ?Marketplace? pairing process. Following this initial work, changes will be considered before a final version is made available as part of the project outputs. Particular consideration has been paid to the extent of the framework, as a key objective of the project is to ensure that the approach to quality assurance has impact but is not overly demanding in terms of time or paperwork. In other words that it is focused on action and value added to staff, students and the programmes being considered.