18 resultados para Feasibility Studies.

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the study of a non-sequential identification technique, so that it may be applied to the identification of process plant mathematical models from process measurements with the greatest degree of accuracy and reliability. In order to study the accuracy of the technique under differing conditions, simple mathematical models were set up on a parallel hybrid. computer and these models identified from input/output measurements by a small on-line digital computer. Initially, the simulated models were identified on-line. However, this method of operation was found not suitable for a thorough study of the technique due to equipment limitations. Further analysis was carried out in a large off-line computer using data generated by the small on-line computer. Hence identification was not strictly on-line. Results of the work have shovm that the identification technique may be successfully applied in practice. An optimum sampling period is suggested, together with noise level limitations for maximum accuracy. A description of a double-effect evaporator is included in this thesis. It is proposed that the next stage in the work will be the identification of a mathematical model of this evaporator using the teclmique described.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Feasibility studies of industrial projects consist of multiple analyses carried out sequentially. This is time consuming and each analysis screens out alternatives based solely on the merits of that analysis. In cross-country petroleum pipeline project selection, market analysis determines throughput requirement and supply and demand points. Technical analysis identifies technological options and alternatives for pipe-line routes. Economic and financial analysis derive the least-cost option. The impact assessment addresses environmental issues. The impact assessment often suggests alternative sites, routes, technologies, and/or implementation methodology, necessitating revision of technical and financial analysis. This report suggests an integrated approach to feasibility analysis presented as a case application of a cross-country petroleum pipeline project in India.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current presentation the basic concepts for CFD modelling are described and feasibility studies are presented. On the example of a complex flow situation at plunging jet conditions the model capabilities are demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz (HSZG) and the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description (see [10-12]). While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated in Rossendorf. In the current paper, the basic concepts for CFD modelling are described and feasibility studies are presented. The model capabilities are demonstrated via complex flow situations, where a plunging jet agitates insulation debris. © Carl Hanser Verlag, München.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the presentation the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport, and sedimentation becomes more important with regard to reactor safety research for pressurized water reactors and boiling water reactors when considering the long-term behavior of emergency core coolant systems during all types of loss-of-coolant accidents (LOCAs). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle populations that varies with size, shape, consistency, and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are, for example, the particle load on strainers and corresponding pressure drop, the sedimentation of the insulation debris in a water pool, and its possible resuspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Sciences Zittau/Görlitz. The project deals with the experimental investigation and the development of computational fluid dynamics (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University of Applied Sciences Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Gorlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Gorlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented. Copyright © 2008 by ASME.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behaviour of emergency core cooling systems during all types of loss of coolant accidents. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modelling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modelling are described and feasibility studies are presented. © Carl Hanser Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD-modeling are described and feasibility studies including the conceptual design of the experiments are presented. © 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. In the current paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes more important with regard to reactor safety research for pressurized and boiling water reactors, when considering the long-term behaviour of emergency core coolant systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of a disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb or impinge on the emergency core cooling systems. Open questions of generic interest are for example the particle load on strainers and corresponding pressure-drop, the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow. A joint research project on such questions is being performed in cooperation with the University of Applied Science Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation and the development of computational fluid dynamic (CFD) models for the description of particle transport phenomena in coolant flow. While the experiments are performed at the University Zittau/Görlitz, the theoretical work is concentrated at Forschungszentrum Dresden-Rossendorf. In the present paper, the basic concepts for computational fluid dynamic (CFD) modelling are described and experimental results are presented. Further experiments are designed and feasibility studies were performed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The investigation of insulation debris generation, transport and sedimentation becomes important with regard to reactor safety research for PWR and BWR, when considering the long-term behavior of emergency core cooling systems during all types of loss of coolant accidents (LOCA). The insulation debris released near the break during a LOCA incident consists of a mixture of disparate particle population that varies with size, shape, consistency and other properties. Some fractions of the released insulation debris can be transported into the reactor sump, where it may perturb/impinge on the emergency core cooling systems. Open questions of generic interest are the sedimentation of the insulation debris in a water pool, its possible re-suspension and transport in the sump water flow and the particle load on strainers and corresponding pressure drop. A joint research project on such questions is being performed in cooperation between the University of Applied Sciences Zittau/Görlitz and the Forschungszentrum Dresden-Rossendorf. The project deals with the experimental investigation of particle transport phenomena in coolant flow and the development of CFD models for its description. While the experiments are performed at the University at Zittau/Görlitz, the theoretical modeling efforts are concentrated at Forschungszentrum Dresden-Rossendorf. Whereas the paper Alt et al. is focused on the experiments in the present paper the basic concepts for CFD modeling are described and feasibility studies including the conceptual design of the experiments are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the technical feasibility of a novel cooling system for commercial greenhouses, knowledge of the state of the art in greenhouse cooling is required. An extensive literature review was carried out that highlighted the physical processes of greenhouse cooling and showed the limitations of the conventional technology. The proposed cooling system utilises liquid desiccant technology; hence knowledge of liquid desiccant cooling is also a prerequisite before designing such a system. Extensive literature reviews on solar liquid desiccant regenerators and desiccators, which are essential parts of liquid desiccant cooling systems, were carried out to identify their advantages and disadvantages. In response to the findings, a regenerator and a desiccator were designed and constructed in lab. An important factor of liquid desiccant cooling is the choice of liquid desiccant itself. The hygroscopicity of the liquid desiccant affects the performance of the system. Bitterns, which are magnesium-rich brines derived from seawater, are proposed as an alternative liquid desiccant for cooling greenhouses. A thorough experimental and theoretical study was carried out in order to determine the properties of concentrated bitterns. It was concluded that their properties resemble pure magnesium chloride solutions. Therefore, magnesium chloride solution was used in laboratory experiments to assess the performance of the regenerator and the desiccator. To predict the whole system performance, the physical processes of heat and mass transfer were modelled using gPROMS® advanced process modelling software. The model was validated against the experimental results. Consequently it was used to model a commercials-scale greenhouse in several hot coastal areas in the tropics and sub-tropics. These case studies show that the system, when compared to evaporative cooling, achieves 3oC-5.6oC temperature drop inside the greenhouse in hot and humid places (RH>70%) and 2oC-4oC temperature drop in hot and dry places (50%

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of shallow fluidized bed boilers is defined and a preliminary working design for a gas-fired package boiler has been produced. Those areas of the design requiring further study have been specified. Experimental investigations concerning these areas have been carried out. A two-dimensional, conducting paper analog has been developed for the specific purpose of evaluating sheet fins. The analog has been generalised and is presented as a simple means of simulating the general, two-dimensional Helmholtz equation. By recording the transient response of spherical, calorimetric probes when plunged into heated air-fluidized beds, heat transfer coefficients have been measured at bed temperatures up to 1 100°C. A correlation fitting all the data to within ±10% has been obtained. A model of heat transfer to surfaces immersed in high temperature beds has been proposed. The model solutions are, however, only in qualitative agreement with the experimental data. A simple experimental investigation has revealed that the effective, radial, thermal conductivities of shallow fluidized beds are an order of magnitude lower than the axial conductivities. These must, consequently, be taken into account when considering heat transfer to surfaces immersed within fluidized beds. Preliminary work on pre-mixed gas combustion and some further qualitative experiments have been used as the basis for discussing the feasibility of combusting heavy fuel oils within shallow beds. The use of binary beds, within which the fuel could be both gasified and subsequently burnt, is proposed. Finally, the consequences of the experimental studies on the initial design are considered, and suggestions for further work are made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As mobile technologies continue to penetrate increasingly diverse domains of use, we accordingly need to understand the feasibility of different interaction technologies across such varied domains. This case study describes an investigation into whether speechbased input is a feasible interaction option for use in a complex, and arguably extreme, environment of use – that is, lobster fishing vessels. We reflect on our approaches to bringing the “high seas” into lab environments for this purpose, comparing the results obtained via our lab and our field studies. Our hope is that the work presented here will go some way to enhancing the literature in terms of approaches to bringing complex real-world contexts into lab environments for the purpose of evaluating the feasibility of specific interaction technologies.