3 resultados para Farkas lemma
em Aston University Research Archive
Resumo:
Based on a simple convexity lemma, we develop bounds for different types of Bayesian prediction errors for regression with Gaussian processes. The basic bounds are formulated for a fixed training set. Simpler expressions are obtained for sampling from an input distribution which equals the weight function of the covariance kernel, yielding asymptotically tight results. The results are compared with numerical experiments.
Resumo:
Recently there has been an outburst of interest in extending topographic maps of vectorial data to more general data structures, such as sequences or trees. However, there is no general consensus as to how best to process sequences using topographicmaps, and this topic remains an active focus of neurocomputational research. The representational capabilities and internal representations of the models are not well understood. Here, we rigorously analyze a generalization of the self-organizingmap (SOM) for processing sequential data, recursive SOM (RecSOM) (Voegtlin, 2002), as a nonautonomous dynamical system consisting of a set of fixed input maps. We argue that contractive fixed-input maps are likely to produce Markovian organizations of receptive fields on the RecSOM map. We derive bounds on parameter β (weighting the importance of importing past information when processing sequences) under which contractiveness of the fixed-input maps is guaranteed. Some generalizations of SOM contain a dynamic module responsible for processing temporal contexts as an integral part of the model. We show that Markovian topographic maps of sequential data can be produced using a simple fixed (nonadaptable) dynamic module externally feeding a standard topographic model designed to process static vectorial data of fixed dimensionality (e.g., SOM). However, by allowing trainable feedback connections, one can obtain Markovian maps with superior memory depth and topography preservation. We elaborate on the importance of non-Markovian organizations in topographic maps of sequential data. © 2006 Massachusetts Institute of Technology.