13 resultados para Familial cases
em Aston University Research Archive
Resumo:
To further characterize the neuropathology of the heterogeneous molecular disorder frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP).
Resumo:
Abnormal protein aggregates of transactive response (TAR) DNA-binding protein (TDP-43) in the form of neuronal cytoplasmic inclusions (NCI), oligodendroglial inclusions (GI), neuronal internuclear inclusions (NII), and dystrophic neurites (DN) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). To investigate the role of phosphorylated TDP-43 (pTDP-43) in neurodegeneration in FTLD-TDP, the spatial patterns of the pTDP-43-immunoreactive NCI, GI, NII, and DN were studied in frontal and temporal cortex in three groups of cases: (1) familial FTLD-TDP caused by progranulin (GRN) mutation, (2) a miscellaneous group of familial cases containing cases caused by valosin-containing protein (VCP) mutation, ubiquitin associated protein 1 (UBAP1) mutation, and cases not associated with currently known genes, and (3) sporadic FTLD-TDP. In a significant number of brain regions, the pTDP-43-immunoreactive inclusions developed in clusters and the clusters were distributed regularly parallel to the tissue boundary. The spatial patterns of the inclusions were similar to those revealed by a phosphorylation-independent anti-TDP-43 antibody. The spatial patterns and cluster sizes of the pTDP-43-immunoreactive inclusions were similar in GRN mutation cases, remaining familial cases, and in sporadic FTLD-TDP. Hence, pathological changes initiated by different genetic factors in familial cases and by unknown causes in sporadic FTLD-TDP appear to follow a parallel course resulting in very similar patterns of degeneration of frontal and temporal lobes.
Resumo:
A Principal Components Analysis of neuropathological data from 79 Alzheimer’s disease (AD) cases was performed to determine whether there was evidence for subtypes of the disease. Two principal components were extracted from the data which accounted for 72% and 12% of the total variance respectively. The results suggested that 1) AD was heterogeneous but subtypes could not be clearly defined; 2) the heterogeneity, in part, reflected disease onset; 3) familial cases did not constitute a distinct subtype of AD and 4) there were two forms of late onset AD, one of which was associated with less senile plaque and neurofibrillary tangle development but with a greater degree of brain atherosclerosis.
Resumo:
A principal components analysis was carried out on neuropathological data collected from 79 cases of Alzheimer's disease (AD) diagnosed in a single centre. The purpose of the study was to determine whether on neuropathological criteria there was evidence for clearly defined subtypes of the disease. Two principal components (PC1 and PC2) were extracted from the data. PC1 was considerable more important than PC2 accounting for 72% of the total variance. When plotted in relation to the first two principal components the majority of cases (65/79) were distributed in a single cluster within which subgroupings were not clearly evident. In addition, there were a number of individual, mainly early-onset cases, which were neither related to each other nor to the main cluster. The distribution of each neuropathological feature was examined in relation to PC1 and 2, Disease onset, rhe degree of gross brain atrophy, neuronal loss and the devlopment of senile plaques (SP) and neurofibrillary tangles (NFT) were negatively correlated with PC1. The devlopment of SP and NFT and the degree of brain athersclerosis were positively correlated with PC2. These results suggested: 1) that there were different forms of AD but no clear division of the cases into subclasses could be made based on the neuropathological criteria used; the cases showing a more continuous distribution from one form to another, 2) that disease onset was an important variable and was associated with a greater development of pathological changes, 3) familial cases were not a distinct subclass of AD; the cases being widely distributed in relation to PC1 and PC2 and 4) that there may be two forms of late-onset AD whic grade into each other, one of which was associated with less SP and NFT development but with a greater degree of brain atherosclerosis.
Resumo:
Frontotemporal lobar degeneration (FTLD) with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP) is a neurodegenerative disease characterized by variable neocortical and allocortical atrophy principally affecting the frontal and temporal lobes. Histologically, there is neuronal loss, microvacuolation in the superficial cortical laminae, and a reactive astrocytosis. A variety of TDP-43 immunoreactive changes are present in FTLD-TDP including neuronal cytoplasmic inclusions (NCI), neuronal intranuclear inclusions (NII), dystrophic neurites (DN) and, oligodendroglial inclusions (GI). Many cases of familial FTLD-TDP are caused by DNA mutations of the progranulin (GRN) gene. Hence, the density, spatial patterns, and laminar distribution of the pathological changes were studied in nine cases of FLTD-TDP with GRN mutation. The densities of NCI and DN were greater in cases caused by GRN mutation compared with sporadic cases. In cortical regions, the commonest spatial pattern exhibited by the TDP-43 immunoreactive lesions was the presence of clusters of inclusions regularly distributed parallel to the pia mater. In approximately 50% of cortical gyri, the NCI exhibited a peak of density in the upper cortical laminae while the GI were commonly distributed across all laminae. The distribution of the NII and DN was variable, the most common pattern being a peak of NII density in the lower cortical laminae and DN in the upper cortical laminae. These results suggest in FTLD-TDP caused by GRN mutation: 1) there are greater densities of NCI and DN than in sporadic cases of the disease, 2) there is degeneration of the cortico-cortical and cortico-hippocampal pathways, and 3) cortical degeneration occurs across the cortical laminae, the various TDP-43 immunoreactive inclusions often being distributed in different cortical laminae.
Resumo:
In sporadic Alzheimer’s disease (SAD), the classic (‘dense-cored’) ß-amyloid (Aß) deposits are aggregated around the larger blood vessels in the upper laminae of the cerebral cortex. To determine whether a similar relationship exists in familial AD (FAD), the spatial correlations between the diffuse, primitive, and classic ß-amyloid (Aß deposits and blood vessels were studied in ten FAD cases including cases linked to amyloid precursor protein (APP) and presenilin (PSEN) gene mutations and expressing apolipoprotein E (apo E) allele E4. Sections of frontal cortex were immunolabelled with antibodies against Aß and with collagen IV to reveal the Aß deposits and blood vessel profiles. In the FAD cases as a whole, Aßdeposits were distributed in clusters. There was a positive spatial correlation between the clusters of the diffuse Aßdeposits and the larger (>10 µm) and smaller diameter (<10 µm) blood vessels in one and three cases respectively. The primitive Aß deposits were spatially correlated with larger and smaller blood vessels each in four cases and the classic deposits in three and four cases respectively. Apo E genotype of the patient did not influence spatial correlation with blood vessels. Hence, spatial correlations between the classic deposits and larger diameter blood vessels were significantly less frequent in FAD compared with SAD. It was concluded that both Aß deposit morphology and AD subtype determine spatial correlations with blood vessels in AD.
Resumo:
The spatial patterns of the diffuse, primitive, and classic β-amyloid (Aβ) deposits were compared in cortical regions in early-onset familial Alzheimer's disease (EO-FAD) linked to mutations of the amyloid precursor protein APP) or presenilin 1 (PSEN1) genes, late-onset familial AD (LO-FAD), and sporadic AD (SAD). The objective was to determine whether genetic factors influenced the spatial patterns of the Aβ deposits. Aβ deposits were distributed either in clusters which were regularly distributed parallel to the pia mater or in larger, non-regularly distributed clusters. There were no significant differences in spatial pattern of the diffuse deposits between patient groups but mean cluster size of the diffuse deposits was larger in FAD compared with SAD. Primitive Aβ deposits were more frequently distributed in regular clusters and less frequently distributed in large clusters in FAD compared with SAD. Classic Aβ deposits were more frequently distributed in regularly spaced clusters and less frequently distributed in large clusters in LO-FAD compared with EO-FAD. There were no significant differences in the spatial patterns or cluster sizes of Aβ deposits in cases classified according to apolipoprotein E (APOE) genotype. These results suggest (1) greater deposition of Aβ in the form of clusters of diffuse deposits in FAD, (2) a greater proportion of diffuse deposits may be converted to primitive deposits in SAD, (3) classic deposits are more widely distributed in EO-FAD, and (4) the presence of APOE allele ε4 has little effect on the spatial patterns of Aβ deposits.
Resumo:
The density of diffuse, primitive and classic beta-amyloid (A beta) deposits was studied in relation to the incidence of blood vessels in the superior frontal gyrus of nine cases of sporadic Alzheimer's disease (SAD), two cases of familial Alzheimer's disease (FAD) with amyloid precursor protein (APP) mutations (APP717, Val --> Ile), and eight cases of FAD not linked to chromosomes 21, 14 or 1. Stepwise multiple regression was used to determine for each patient whether variations in the density of A beta deposits along the cortex were significantly correlated with the incidence of blood vessels. In the majority of FAD and SAD cases, the density of the diffuse and primitive type A beta deposits was not related to blood vessels. However, the incidence of the larger diameter (> 10 microns) blood vessels was positively correlated with the density of the classic A beta deposits in eight (89%) SAD and two (20%) FAD cases. The data suggest that the densities of vessels and deposits were not significantly correlated between cases but only within cases, suggesting a strictly local effect. In addition, the spatial association between classic A beta deposits and blood vessels may be more apparent in SAD compared with FAD cases.
Resumo:
Introduction: The density of diffuse, primitive and classic beta-amyloid (Abeta) deposits and blood vessels was studied in nine cases of sporadic Alzheimer's disease (SAD) and 10 cases of familial Alzheimer's disease (FAD) including two cases with amyloid precursor protein (APP) mutations (APP717, Val - Ile). Materials and Methods: Sections of frontal cortex stained for Abeta12-28 counterstained with collagen type IV antiserum. Densities measured along the upper cortex in 64-128, 1000 x 200 micron continuous sample fields. Results: The density of diffuse and primitive deposits was not correlated with blood vessels in FAD or SAD. The density of the classic deposits was positively correlated with the larger diameter (> 10 micron) blood vessels in all SAD cases and weakly correlated with blood vessel in three non-APP FAD cases. Conclusions: Blood vessels are less important in the formation of classic Abeta deposits in FAD compared with SAD.
Resumo:
Neuronal intermediate filament inclusion disease (NIFID), a rare form of frontotemporal lobar degeneration (FTLD), is characterized neuropathologically by focal atrophy of the frontal and temporal lobes, neuronal loss, gliosis, and neuronal cytoplasmic inclusions (NCI) containing epitopes of ubiquitin and neuronal intermediate filament proteins. Recently, the 'fused in sarcoma' (FUS) protein (encoded by the FUS gene) has been shown to be a component of the inclusions of familial amyotrophic lateral sclerosis with FUS mutation, NIFID, basophilic inclusion body disease, and atypical FTLD with ubiquitin-immunoreactive inclusions (aFTLD-U). To further characterize FUS proteinopathy in NIFID, and to determine whether the pathology revealed by FUS immunohistochemistry (IHC) is more extensive than a-internexin, we have undertaken a quantitative assessment of ten clinically and neuropathologically well-characterized cases using FUS IHC. The densities of NCI were greatest in the dentate gyrus (DG) and in sectors CA1/2 of the hippocampus. Anti-FUS antibodies also labeled glial inclusions (GI), neuronal intranuclear inclusions (NII), and dystrophic neurites (DN). Vacuolation was extensive across upper and lower cortical layers. Significantly greater densities of abnormally enlarged neurons and glial cell nuclei were present in the lower compared with the upper cortical laminae. FUS IHC revealed significantly greater numbers of NCI in all brain regions especially the DG. Our data suggest: (1) significant densities of FUS-immunoreactive NCI in NIFID especially in the DG and CA1/2; (2) infrequent FUS-immunoreactive GI, NII, and DN; (3) widely distributed vacuolation across the cortex, and (4) significantly more NCI revealed by FUS than a-internexin IHC.
Resumo:
Neuronal cytoplasmic inclusions (NCI) immunoreactive for transactive response DNA-binding protein (TDP-43) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). We studied the spatial patterns of the TDP-43 immunoreactive NCI in the frontal and temporal cortex of 15 cases of FTLD-TDP. The NCI were distributed parallel to the tissue boundary predominantly in regular clusters 50-400 µm in diameter. In five cortical areas, the size of the clusters approximated to the cells of the cortico-cortical pathways. In most regions, cluster size was smaller than 400 µm. There were no significant differences in spatial patterns between familial and sporadic cases. Cluster size of the NCI was not correlated with disease duration, brain weight, Braak stage, or disease subtype. The spatial pattern of the NCI was similar to that of neuronal inclusions in other neurodegenerative diseases and may reflect a common pattern of degeneration involving the cortico-cortical projections.
Resumo:
Factors associated with duration of dementia in a consecutive series of 103 Alzheimer's disease (AD) cases were studied using the Kaplan-Meier estimator and Cox regression analysis (proportional hazard model). Mean disease duration was 7.1 years (range: 6 weeks-30 years, standard deviation = 5.18); 25% of cases died within four years, 50% within 6.9 years, and 75% within 10 years. Familial AD cases (FAD) had a longer duration than sporadic cases (SAD), especially cases linked to presenilin (PSEN) genes. No significant differences in duration were associated with age, sex, or apolipoprotein E (Apo E) genotype. Duration was reduced in cases with arterial hypertension. Cox regression analysis suggested longer duration was associated with an earlier disease onset and increased senile plaque (SP) and neurofibrillary tangle (NFT) pathology in the orbital gyrus (OrG), CA1 sector of the hippocampus, and nucleus basalis of Meynert (NBM). The data suggest shorter disease duration in SAD and in cases with hypertensive comorbidity. In addition, degree of neuropathology did not influence survival, but spread of SP/NFT pathology into the frontal lobe, hippocampus, and basal forebrain was associated with longer disease duration. © 2014 R. A. Armstrong.
Resumo:
To determine whether genetic factors influence frontal lobe degeneration in Alzheimer's disease (AD), the laminar distributions of diffuse, primitive, and classic β-amyloid (Aβ) peptide deposits were compared in early-onset familial AD (EO-FAD) linked to mutations of the amyloid precursor protein (APP) or presenilin 1 (PSEN1) gene, late-onset familial AD (LO-FAD), and sporadic AD (SAD). The influence of apolipoprotein E (Apo E) genotype on laminar distribution was also studied. In the majority of FAD and SAD cases, maximum density of the diffuse and primitive Aβ deposits occurred in the upper cortical layers, whereas the distribution of the classic Aβ deposits was more variable, either occurring in the lower layers, or a double-peaked (bimodal) distribution was present, density peaks occurring in upper and lower layers. The cortical layer at which maximum density of Aβ deposits occurred and maximum density were similar in EO-FAD, LO-FAD and SAD. In addition, there were no significant differences in distributions in cases expressing Apo E ε4 alleles compared with cases expressing the ε2 or ε3 alleles. These results suggest that gene expression had relatively little effect on the laminar distribution of Aβ deposits in the frontal lobe of the AD cases studied. Hence, the pattern of frontal lobe degeneration in AD is similar regardless of whether it is associated with APP and PSEN1, mutation, allelic variation in Apo E, or with SAD.