10 resultados para Facility
em Aston University Research Archive
Resumo:
Purpose – The purpose of the paper is to present the findings of a study of factory closure management. It details the sequence and the results of the key strategic manufacturing management decisions made from the time of the announcement of the plant closure to the cessation of operations. The paper also includes an analysis of the human resource management (HRM) actions taken during this same time period and their consequences upon all those involved in the closure management process. Design/methodology/approach – The case study methodology consisted of two initial site visits to monitor closure management effectiveness (adherence to plan and the types and frequency of closure management communications). During these visits, documentary evidence of the impact of the closure decision upon production performance was also collected (manufacturing output and quality performance data). Following plant closure, interviews were held with senior business, production and HRM managers and production personnel. A total of 12 interviews were carried out. Findings – The case study findings have informed the development of a conceptual model of facility closure management. Information obtained from the interviews suggests that the facility closure management process consists of five key management activities. The unexpected announcement of a factory closure can cause behavioural changes similar to those of bereavement, particularly by those employees who are its survivors. In addition, similar reactions to the closure announcement may be displayed by those who choose to remain employed by the factory owner throughout the phased closure of the plant. Originality/value – Facility closure management is an insufficiently researched strategic operations management activity. This paper details a recommended procedure for its management. A conceptual model has also been developed to illustrate the links between the key facility closure management tasks and the range of employee changes of behaviour that can be induced by their execution.
Resumo:
A discrete event simulation model was developed and used to estimate the storage area required for a proposed overseas textile manufacturing facility. It was found that the simulation was able to achieve this because of its ability to both store attribute values and to show queuing levels at an individual product level. It was also found that the process of undertaking the simulation project initiated useful discussions regarding the operation of the facility. Discrete event simulation is shown to be much more than an exercise in quantitative analysis of results and an important task of the simulation project manager is to initiate a debate among decision makers regarding the assumptions of how the system operates.
Resumo:
This paper develops and applies an integrated multiple criteria decision making approach to optimize the facility location-allocation problem in the contemporary customer-driven supply chain. Unlike the traditional optimization techniques, the proposed approach, combining the analytic hierarchy process (AHP) and the goal programming (GP) model, considers both quantitative and qualitative factors, and also aims at maximizing the benefits of deliverer and customers. In the integrated approach, the AHP is used first to determine the relative importance weightings or priorities of alternative locations with respect to both deliverer oriented and customer oriented criteria. Then, the GP model, incorporating the constraints of system, resource, and AHP priority is formulated to select the best locations for setting up the warehouses without exceeding the limited available resources. In this paper, a real case study is used to demonstrate how the integrated approach can be applied to deal with the facility location-allocation problem, and it is proved that the integrated approach outperforms the traditional costbased approach.
Resumo:
This thesis describes the design and engineering of a pressurised biomass gasification test facility. A detailed examination of the major elements within the plant has been undertaken in relation to specification of equipment, evaluation of options and final construction. The retrospective project assessment was developed from consideration of relevant literature and theoretical principles. The literature review includes a discussion on legislation and applicable design codes. From this analysis, each of the necessary equipment units was reviewed and important design decisions and procedures highlighted and explored. Particular emphasis was placed on examination of the stringent demands of the ASME VIII design codes. The inter-relationship of functional units was investigated and areas of deficiency, such as biomass feeders and gas cleaning, have been commented upon. Finally, plant costing was summarized in relation to the plant design and proposed experimental programme. The main conclusion drawn from the study is that pressurised gasification of biomass is far more difficult and expensive to support than atmospheric gasification. A number of recommendations have been made regarding future work in this area.
Resumo:
A comprehensive coverage is crucial for communication, supply, and transportation networks, yet it is limited by the requirement of extensive infrastructure and heavy energy consumption. Here, we draw an analogy between spins in antiferromagnet and outlets in supply networks, and apply techniques from the studies of disordered systems to elucidate the effects of balancing the coverage and supply costs on the network behavior. A readily applicable, coverage optimization algorithm is derived. Simulation results show that magnetized and antiferromagnetic domains emerge and coexist to balance the need for coverage and energy saving. The scaling of parameters with system size agrees with the continuum approximation in two dimensions and the tree approximation in random graphs. Due to frustration caused by the competition between coverage and supply cost, a transition between easy and hard computation regimes is observed. We further suggest a local expansion approach to greatly simplify the message updates which shed light on simplifications in other problems. © 2014 American Physical Society.
Resumo:
Floods are one of the most dangerous and common disasters worldwide, and these disasters are closely linked to the geography of the affected area. As a result, several papers in the academic field of humanitarian logistics have incorporated the use of Geographical Information Systems (GIS) for disaster management. However, most of the contributions in the literature are using these systems for network analysis and display, with just a few papers exploiting the capabilities of GIS to improve planning and preparedness. To show the capabilities of GIS for disaster management, this paper uses raster GIS to analyse potential flooding scenarios and provide input to an optimisation model. The combination is applied to two real-world floods in Mexico to evaluate the value of incorporating GIS for disaster planning. The results provide evidence that including GIS analysis for a decision-making tool in disaster management can improve the outcome of disaster operations by reducing the number of facilities used at risk of flooding. Empirical results imply the importance of the integration of advanced remote sensing images and GIS for future systems in humanitarian logistics.
Resumo:
From 1992 to 2012 4.4 billion people were affected by disasters with almost 2 trillion USD in damages and 1.3 million people killed worldwide. The increasing threat of disasters stresses the need to provide solutions for the challenges faced by disaster managers, such as the logistical deployment of resources required to provide relief to victims. The location of emergency facilities, stock prepositioning, evacuation, inventory management, resource allocation, and relief distribution have been identified to directly impact the relief provided to victims during the disaster. Managing appropriately these factors is critical to reduce suffering. Disaster management commonly attracts several organisations working alongside each other and sharing resources to cope with the emergency. Coordinating these agencies is a complex task but there is little research considering multiple organisations, and none actually optimising the number of actors required to avoid shortages and convergence. The aim of the this research is to develop a system for disaster management based on a combination of optimisation techniques and geographical information systems (GIS) to aid multi-organisational decision-making. An integrated decision system was created comprising a cartographic model implemented in GIS to discard floodable facilities, combined with two models focused on optimising the decisions regarding location of emergency facilities, stock prepositioning, the allocation of resources and relief distribution, along with the number of actors required to perform these activities. Three in-depth case studies in Mexico were studied gathering information from different organisations. The cartographic model proved to reduce the risk to select unsuitable facilities. The preparedness and response models showed the capacity to optimise the decisions and the number of organisations required for logistical activities, pointing towards an excess of actors involved in all cases. The system as a whole demonstrated its capacity to provide integrated support for disaster preparedness and response, along with the existence of room for improvement for Mexican organisations in flood management.