5 resultados para FUEL-CELLS

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of calcium hydroxide for scavenging zincate species is demonstrated to be a highly effective approach for increasing the electrolyte capacity and improving the performance of the zinc-air fuel cell system. A fundamental approach is established in this study to quantify the formation of calcium zincate as the product of scavenging and the amount of water compensation necessary for optimal performance. The good agreement between predicted and experimental results proves the validity of the proposed theoretical approach. By applying the results of theoretical predictions, both the electrolyte capacity and the cell longevity have been increased by more than 40%. It is also found that, using Ca(OH)2 to scavenge zincate species in concentrated KOH solutions, affects mostly the removal of zincate, rather than ZnO, from the electrolyte, whereas the presence of excess, free, mobile H2O plays a key role in dissolving ZnO and forming zincate. The results obtained in this study demonstrate that the proposed approach can widely and effectively be applied to all zinc-air cell systems during their discharge cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc-air fuel cells (ZAFCs) present a promising energy source with a competing potential with the lithium-ion battery and even with proton-exchange membrane fuel cells (PEMFCs) for applications in next generation electrified transport and energy storage. The regeneration of zinc is essential for developing the next-generation, i.e., electrochemically rechargeable ZAFCs. This review aims to provide a comprehensive view on both theoretical and industrial platforms already built hitherto, with focus on electrode materials, electrode and electrolyte additives, solution chemistry, zinc deposition reaction mechanisms and kinetics, and electrochemical zinc regeneration systems. The related technological challenges and their possible solutions are described and discussed. A summary of important R&D patents published within the recent 10 years is also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the synthesis, characterisation and catalytic performance of two nature-inspired biomass-derived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of a real food waste (lobster shells) or by mimicking the composition of lobster shells using chitin and CaCO3 particles followed by acid washing. The simplified model of artificial lobster was prepared for better reproducibility. The calcium carbonate in both samples acts as a pore agent, creating increased surface area and pore volume, though considerably higher in artificial lobster samples due to the better homogeneity of the components. Various characterisation techniques revealed the presence of a considerable amount of hydroxyapatite left in the real lobster samples after acid washing and a low content of carbon (23%), nitrogen and sulphur (<1%), limiting the surface area to 23 m2/g, and consequently resulting in rather poor catalytic activity. However, artificial lobster samples, with a surface area of ≈200 m2/g and a nitrogen doping of 2%, showed a promising onset potential, very similar to a commercially available platinum catalyst, with better methanol tolerance, though with lower stability in long time testing over 10,000 s.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Efficient numerical models facilitate the study and design of solid oxide fuel cells (SOFCs), stacks, and systems. Whilst the accuracy and reliability of the computed results are usually sought by researchers, the corresponding modelling complexities could result in practical difficulties regarding the implementation flexibility and computational costs. The main objective of this article is to adapt a simple but viable numerical tool for evaluation of our experimental rig. Accordingly, a model for a multi-layer SOFC surrounded by a constant temperature furnace is presented, trained and validated against experimental data. The model consists of a four-layer structure including stand, two interconnects, and PEN (Positive electrode-Electrolyte-Negative electrode); each being approximated by a lumped parameter model. The heating process through the surrounding chamber is also considered. We used a set of V-I characteristics data for parameter adjustment followed by model verification against two independent sets of data. The model results show a good agreement with practical data, offering a significant improvement compared to reduced models in which the impact of external heat loss is neglected. Furthermore, thermal analysis for adiabatic and non-adiabatic process is carried out to capture the thermal behaviour of a single cell followed by a polarisation loss assessment. Finally, model-based design of experiment is demonstrated for a case study.