11 resultados para FORSKOLIN

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The importance of appropriate normalization controls in quantitative real-time polymerase chain reaction (qPCR) experiments has become more apparent as the number of biological studies using this methodology has increased. In developing a system to study gene expression from transiently transfected plasmids, it became clear that normalization using chromosomally encoded genes is not ideal, at it does not take into account the transfection efficiency and the significantly lower expression levels of the plasmids. We have developed and validated a normalization method for qPCR using a co-transfected plasmid.Results: The best chromosomal gene for normalization in the presence of the transcriptional activators used in this study, cadmium, dexamethasone, forskolin and phorbol-12-myristate 13-acetate was first identified. qPCR data was analyzed using geNorm, Normfinder and BestKeeper. Each software application was found to rank the normalization controls differently with no clear correlation. Including a co-transfected plasmid encoding the Renilla luciferase gene (Rluc) in this analysis showed that its calculated stability was not as good as the optimised chromosomal genes, most likely as a result of the lower expression levels and transfection variability. Finally, we validated these analyses by testing two chromosomal genes (B2M and ActB) and a co-transfected gene (Rluc) under biological conditions. When analyzing co-transfected plasmids, Rluc normalization gave the smallest errors compared to the chromosomal reference genes.Conclusions: Our data demonstrates that transfected Rluc is the most appropriate normalization reference gene for transient transfection qPCR analysis; it significantly reduces the standard deviation within biological experiments as it takes into account the transfection efficiencies and has easily controllable expression levels. This improves reproducibility, data validity and most importantly, enables accurate interpretation of qPCR data. © 2010 Jiwaji et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal burst firing in the subthalamic nucleus (STN) is one of the hallmarks of dopamine depletion in Parkinson's disease. Here, we have determined the postsynaptic effects of dopamine in the STN and the functional consequences of dopamine receptor modulation on burst firing in vitro. STN cells displayed regular spiking activity at a rate of 7.9 +/- 0.5 Hz. Application of dopamine (30 mu M) induced membrane depolarisations accompanied by an increase in firing rate of mean 12.0 +/- 0.6 Hz in all 69 cells. The dopamine effect was mimicked by the dopamine D1/D5 receptor agonist SKF38393 (10 mu M, 17 cells) and the dopamine D2-like receptor agonist quinpirole (10 mu M, 35 cells), partly reduced by D1/D5 antagonist SCH23390 (2 mu M, seven cells), but unaffected by the D2 antagonists sulpiride (10 mu M, seven cells) or eticlopride (10 mu M, six cells). Using voltage ramps, dopamine induced an inward current of 69 +/- 9.4 pA at a holding potential of -60 mV (n = 17). This current was accompanied by an increase in input conductance of 1.55 +/- 0.35 nS which reversed at -30.6 +/- 2.3 mV, an effect mimicked by SKF38393 (10 AM, nine cells). Similar responses were observed when measuring instantaneous current evoked by voltage steps and in the presence of the I-h blocker, ZD7288, indicating effects independent of I-h. The increase in conductance was blocked by SCH23390 (2 mu M, n = 4), mimicked by the activator of adenylyl cyclase forskolin (10 mu M, n = 7) and blocked by H-89, an inhibitor of cyclic AMP dependent protein kinase A (10 PM, n = 6). These results indicate that the dopamine depolarisation is in part mediated by D1/D5 receptor mediated activation of a cyclic-nucleotide gated (CNG) non-specific cation conductance. This conductance contributes to the membrane depolarisation that changes STN neuronal bursting to more regular activity by significantly increasing burst duration and number of spikes per burst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adipocytes isolated from cachectic mice bearing the MAC 16 tumour showed over a 3-fold increase in lipolytic response to both low concentrations of isoprenaline and a tumour-derived lipid mobilizing factor (LMF). This was reflected by an enhanced stimulation of adenylate cyclase in plasma membrane fractions of adipocytes in the presence of both factors. There was no up-regulation of adenylate cyclase in response to forskolin, suggesting that the effect arose from a change in receptor number or G-protein expression. Immunoblotting of adipocyte membranes from mice bearing the MAC16 tumour showed an increased expression of Gαs up to 10% weight loss and a reciprocal decrease in Gα. There was also an increased expression of Gαs and a decrease in Gα in adipose tissue from a patient with cancer-associated weight loss compared with a non-cachectic cancer patient. The changes in G-protein expression were also seen in adipose tissue of normal mice administered pure LMF as well as in 3T3L1 adipocytes in vitro. The changes in G-protein expression induced by LMF were attenuated by the polyunsaturated fatty acid, eicosapentaenoic acid (EPA). This suggests that this tumour-derived lipolytic factor acts to sensitize adipose tissue to lipolytic stimuli, and that this effect is attenuated by EPA, which is known to preserve adipose tissue in cancer cachexia. © 2001 Cancer Research Campaign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of murine myoblasts, myotubes and tumour cells with a tumour-produced lipid mobilizing factor (LMF), caused a concentration-dependent stimulation of protein synthesis, within a 24 h period. There was no effect on cell number or [3H] thymidine incorporation, but a similar concentration-dependent stimulation of 2-deoxyglucose uptake. LMF produced an increase in intracellular cyclic AMP levels, which was linearly (r2 = 0.973) related to the increase in protein synthesis. The effect of LMF was attenuated by the adenylate cyclase inhibitor MDL12330A, and was additive with the stimulation produced by forskolin. Both propranolol (10 μM) and the specific β3-adrenergic receptor antagonist SR 59230A (10-5M), significantly reduced the stimulation of protein synthesis induced by LMF. Protein synthesis was also increased by 69% (P = 0.006) in soleus muscles of mice administered LMF, while there was a 26% decrease in protein degradation (P = 0.03). While LMF had no effect on the lysosomal enzymes, cathepsins B and L, there was a decrease in proteasome activity, as determined both by the 'chymotrypsin-like' enzyme activity, as well as expression of proteasome α-type subunits, determined by Western blotting. These results show that in addition to its lipid-mobilizing activity LMF also increases protein accumulation in skeletal muscle both by an increase in protein synthesis and a decrease in protein catabolism. © 2001 Cancer Research Campaign.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the cerebellar cortex, forms of both long-term depression (LTD) and long-term potentiation (LTP) can be observed at parallel fibre (PF) - Purkinje cell (PC) synapses. A presynaptic variant of cerebellar LTP can be evoked in PCs by raised frequency stimulation (RFS) of parallel fibre at 4-16Hz for 15s. This form of LTP is dependent on protein kinase A (PKA) and nitric oxide (NO), and can spread to distant synapses. Application of an extracellular NO scavenger, cPTIO, was found to prevent the spread of LTP to distant PF synapses in rat cerebellar slices. G-substrate may be an important mediator of the NO-dependent pathway for LTD. 8-16Hz RFS of PFs without a high concentration of calcium chelator in the postsynaptic cell evokes LTD. In cerebellar slices from wild-type and transgenic, G-substrate knockout mice, 8Hz RFS was applied to PFs, with a low concentration of postsynaptic calcium chelator. In PCs from wild-type mice, LTD predominated, whereas in those from transgenic mice LTP predominated. The ascending axon (AA) segment of the granule cell axon forms synapses with PCs as well as the PF segment. PPF and fluctuation analysis of EPSCs in rat PCs confirmed that the release sites of AA synapses have a greater probability of transmitter release than PF synapses. Furthermore, AA release sites have greater mean quantal amplitude than PF synapses, which is not due to a different type of postsynaptic receptor. AA synapses were found to have limited capacity to undergo the presynaptic variant of LTP, and were potentiated less than PF synapses in the presence of the PKA activator, forskolin. AA synapses also did not undergo the postsynaptic form of LTP, nor LTD induced by conjunctive stimulation of climbing fibre and PF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cachexia in cancer is characterised by progressive depletion of both adipose tissue stores and skeletal muscle mass. Two catabolic factors produced by cachexia-inducing tumours have the potential for inducing these changes in body composition: (i) proteolysis-inducing factor (PIF) which acts on skeletal muscle to induce both protein degradation and inhibit protein synthesis, (ii) lipid-mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. Administration of lipid-mobilising factor (LMF) to mice produced a specific reduction in carcass lipid with a tendency to increase non-fat carcass mass. Treatment of murine myoblasts, myotubes and tumour cells with tumour-produced LMF, caused concentration dependent stimulation of protein synthesis, within a 24hr period. It produced an increase in intracellular cyclic AMP levels, which was linearly related to the increase in protein synthesis. The observed effect was attenuated by pretreating cells with the adenylate cyclase inhibitor, MDL12330A and was additive with stimulation produced by forskolin. Both propranolol and a specific 3 adrenergic antagonist SR59230A, significantly reduced the stimulation of protein synthesis induced by LMF. LMF also affected protein degradation in vitro, as demonstrated by a reduction in proteasome activity, a key component of the ubiquitin-dependent proteolytic pathway. These effects were opposite to those produced by PIF which caused both a decrease in the rate of protein synthesis and an elevation on protein breakdown when incubated in vitro.Incubation of LMF with a fat cell line produced alterations in the levels of guanine-nucleotide binding proteins (G proteins). This was also evident in adipocyte plasma membranes isolated from mice bearing the tumour model of cachexia, MAC16 adenocarcinoma and from patients with cancer cachexia. Progression through the cachectic state induced an upregulation of stimulatory G proteins paralleled with a downregulation of inhibitory G proteins. These changes would contribute to the increased lipid mobilisation seen in cancer cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Changes in the strength of signalling between neurones are thought to provide a cellular substrate for learning and memory. In the cerebellar cortex, raising the frequency and the strength of parallel fibre (PF) stimulation leads to a long-term depression (LTD) of the strength of signalling at the synapse between PFs and Purkinje cells (PCs), which spreads to distant synapses to the same cell via a nitric oxide (NO) dependent mechanism. At the same synapse, but under conditions of reduced post-synaptic calcium activity, raised frequency stimulation (RFS) of PFs triggers a long-term potentiation of synaptic transmission. The aims of the work described in this thesis were to investigate the conditions necessary for LTD and LTP at this synapse following RFS and to identify the origins and second messenger cascades involved in the induction and spread of LTP and LTD. In thin, parasagittal cerebellar slices whole cell patch clamp recordings were made from PCs and the effects of RFS of one of two, independent PF inputs to the same PC were examined under a range of experimental conditions. Under conditions designed to reduce post-synaptic calcium activity, RFS to a single PF input led to LTP and a decreases in paired pulse facilitation (PPF) in both pathways. This heterosynaptic potentiation was prevented by inhibition of protein kinase A (PKA) or by inhibition of NO synthase with either 7-nitroindazole (7-NI) or NG Nitro-L-argenine methyl ester. Inhibition of guanylate cyclase (GC) or protein kinase G (PKG) had no effect. A similar potentiation was observed upon application of the adenylyl cyclase (AC) activator forskolin or the NO donor spermine NONOate. Both of these treatments also resulted in an increase in the frequency of mEPSCs, which provides further evidence for a presynaptic origin of LTP. Forskolin induced potentiation and the increase in mEPSC frequency were blocked by 7-NI. The styryl dye FM1-43, a fluorescent reporter of endo- and exocytosis, was also used to further examine the possible pre-synaptic origins of LTP. RFS or forskolin application enhanced FM1-43 de-staining and NOS inhibitors blocked this effect. Application of NONOate also enhanced FM1-43 de-staining. When post-synaptic calcium activity was less strictly buffered, RFS to a single PF input led to a transient potentiation that was succeeded by LTD in both pathways. This LTD, which resembled previously described forms, was prevented by inhibition of the NO/cGMP/PKG cascade. Modification of the AC/cAMP/PKA cascade had no effect. In summary, the direction of synaptic plasticity at the PF-PC synapse in response to RFS depends largely on the level of post-synaptic calcium activity. LTP and LTD were non-input specific and both forms of plasticity were dependent on NOS activity. Induction of LTP was mediated by a presynaptic mechanism and depended on NO and cAMP production. LTD on the other hand was a post-synaptic process and required activity of the NO/cGMP/PKG signalling cascade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work presented in this thesis was undertaken to increase understanding of the intracellular mechanisms regulating acid secretion by gastric parietal cells. Investigation of the effects of protein kinase C on secretory activity induced by a variety of agents was a major objective. A further aim was to establish the sites at which epidermal growth factor (EGF) acts to stimulate prostaglandin E2 (PGE2) production and to inhibit acid secretion. These investigations were carried out by using the HGT-1 human gastric cancer cell line and freshly isolated rat parietal cells. In HGT-1 cells, the cyclic AMP response to histamine and to truncated glucagon-like peptide 1 (TGLP-1) was reduced when protein kinase C was activated by 12-0-tetradecanoylphorbol 13-acetate (TPA). Receptor-binding studies and experiments in which cyclic AMP production in HGT-1 cells was stimulated by gastric inhibitory polypeptide, cholera toxin and forskolin suggested that the effect of TPA was mediated by uncoupling of the histamine H2 receptor from the guanine nucleotide regulatory protein Gs, possibly by phosphorylation of the receptor. An involvement of protein kinase C α in this effect was suggested because an antibody to this isoform specifically prevented the inhibitory effects of TPA on histamine-stimulated adenylate cyclase activity in a membrane fraction prepared from HGT-1 cells. Carbachol-stimulated secretory activity in parietal cells was specifically inhibited by Ro 31-8220, a bisindolylmaleimide inhibitor of protein kinase C. Thus protein kinase C may play a role in the activation of the secretory response to carbachol. In parietal cells prelabelled with [3H]-arachidonic acid or [3H]myristic acid, EGF did not affect [3H]-fatty acid or [3H] - diacylglycerol content. No evidence for effects of EGF on phosphatidylinositol glycan-specific phospholipase C, phospholipase A2 or on low Km cyclic AMP phosphodiesterase activities were found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

     This study was undertaken to further understanding of the mechanisms which regulate mucus secretion by rat stomach cells. Particular objectives were: (i) to develop and use a radiochemical assay to estimate the secretion of mucin by a suspension of gastric mucosal cells in vitro, (ii) to develop and use a solid-phase enzyme immunoassay (EIA) to study the regulation of the release of bulk gastric mucin from the isolated cells and (iii) to compare the results obtained with the two procedures.      Cells were isolated by exposure of gastric mucosa to pronase and EDTA. Cell suspensions were preincubated with D-[6-3H]glucosamine. [3H]-labelled material of high molecular mass released into the incubation medium, was purified by Fast Protein Liquid Chromatography, and appeared to be gastric mucin. Some unidentified [3H]-labelled material of lower molecular mass was also found in the medium. Release of [3H]-labelled high molecular mass material was essentially linearly related to time. Secretin, isoprenaline and carbachol stimulated release of [3H]-labelled high molecular mass material. The half-maximally effective concentrations of secretin and isoprenaline were 2.3nM and 34nM respectively. Histamine, gastrin and epidermal growth factor were without effect.      A rabbit polyclonal antibody was raised by using purified 'native' rat gastric mucin as immunogen. The antibody preparation appeared specific for rat gastric mucin and was used to establish a quantitative solid-phase EIA. Release of bulk mucin was essentially linearly related to time. Phorbol-12-myristate-13-acetate (PMA), forskolin and A23187 dose-dependently stimulated bulk mucin release. Synergistic interactions were observed between PMA and forskolin, and PMA and A23187. Secretin and isoprenaline were confirmed as mucin secretogogues.      In conclusion gastric mucin release was investigated for the first time by using a suspension of gastric mucosal cells. Two different assay procedures were developed. Some pathways and agents responsible for controlling mucin secretion were identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Established RlNm5F and lN111 R1 and newly available HlT-T15 and UMR 407/3 B-cell lines have been successfully maintained in vitro. With the exclusion of UMR 407/3 cells, all lines were continuously propagable. Doubling times and plating efficiencies for HlT-T15, RlNm5F, lN111 R1 and UMR 407/3 cells were 20 hours and 85%, 31 hours and 76%, 24 hours and 80% and 38 hours and 94% respectively. All the cell lines were anchorage dependent, but only UMR 407/3 cells grew to confluence. Only HlT-T15 and UMR 407/3 cells produced a true insulin response to glucose but glucose markedly increased the rate of D-[U14C]glucose oxidation by all the cell lines. Glucose induced insulin release from HlT-T15 cells was biphasic with an exaggerated first phase. Insulin release from HlT-T15, RlNm5F and IN111 R1 cells was stimulated by amino acids and sulphonylureas. Glucagon stimulated insulin release from HlT-T15 and RlNm5F cells while somatostatin and pancreatic polypeptide inhibited release. These observations suggest that net insulin release from the whole islet may be the result of significant paracrine interaction. HlT-T15 and RlNm5F cell insulin release was stimulated by forskolin and inhibited by imidazole. Ca2+ channel blockade and calmodulin inhibition suppressed insulin release from HlT-T15, RlNm5F and IN111 R1 cells. In addition phorbol esters stimulated insulin release from RlNm5F cells. These data implicate cAMP, Ca2+ and protein kinase-C in the regulation of insulin release from cultured B-cells. Acetylcholine increased insulin release from HlT-T15 and RlNm5F cells. Inhibition of the response by atropine confirmed the involvement of muscarinic receptors. HlT-T15 cell insulin release was also inhibited by adrenaline. These observations suggest a possible role for the autonomic nervous system in the modulation of insulin release. Preliminary studies with a human insulinoma maintained in monolayer culture have demonstrated a limited life span of some seven weeks, a continuous low level of insulin release but no insulin response to glucose challenge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurotransmitter release at CNS synapses occurs via both action potential-dependent and independent mechanisms, and it has generally been accepted that these two forms of release are regulated in parallel. We examined the effects of activation of group III metabotropic glutamate receptors (mGluRs) on stimulus-evoked and spontaneous glutamate release onto entorhinal cortical neurones in rats, and found a differential regulation of action potential-dependent and independent forms of release. Activation of presynaptic mGluRs depressed the amplitude of stimulus-evoked excitatory postsynaptic currents, but concurrently enhanced the frequency of spontaneous excitatory currents. Moreover, these differential effects on glutamate release were mediated by pharmacologically separable mechanisms. Application of the specific activator of adenylyl cyclase, forskolin, mimicked the effect of mGluR activation on spontaneous, but not evoked release, and inhibition of adenylyl cyclase with 9-tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536) blocked mGluR-mediated enhancement of spontaneous release, but not depression of evoked release. Occlusion studies with calcium channel blockers suggested that the group III mGluRs might depress evoked release through inhibition of both N and P/Q, but not R-type calcium channels. We suggest that the concurrent depression of action potential-evoked, and enhancement of action potential-independent glutamate release operate through discrete second messenger/effector systems at excitatory entorhinal terminals in rat brain. © 2007 IBRO.