13 resultados para FIA and pharmaceuticals
em Aston University Research Archive
Resumo:
The yeast Saccharomyces cerevisiae is an important model organism for the study of cell biology. The similarity between yeast and human genes and the conservation of fundamental pathways means it can be used to investigate characteristics of healthy and diseased cells throughout the lifespan. Yeast is an equally important biotechnological tool that has long been the organism of choice for the production of alcoholic beverages, bread and a large variety of industrial products. For example, yeast is used to manufacture biofuels, lubricants, detergents, industrial enzymes, food additives and pharmaceuticals such as anti-parasitics, anti-cancer compounds, hormones (including insulin), vaccines and nutraceuticals. Its function as a cell factory is possible because of the speed with which it can be grown to high cell yields, the knowledge that it is generally recognized as safe (GRAS) and the ease with which metabolism and cellular pathways, such as translation can be manipulated. In this thesis, these two pathways are explored in the context of their biotechnological application to ageing research: (i) understanding translational processes during the high-yielding production of membrane protein drug targets and (ii) the manipulation of yeast metabolism to study the molecule, L-carnosine, which has been proposed to have anti-ageing properties. In the first of these themes, the yeast strains, spt3?, srb5?, gcn5? and yTHCBMS1, were examined since they have been previously demonstrated to dramatically increase the yields of a target membrane protein (the aquaporin, Fps1) compared to wild-type cells. The mechanisms underlying this discovery were therefore investigated. All high yielding strains were shown to have an altered translational state (mostly characterised by an initiation block) and constitutive phosphorylation of the translational initiation factor, eIF2a. The relevance of the initiation block was further supported by the finding that other strains, with known initiation blocks, are also high yielding for Fps1. A correlation in all strains between increased Fps1 yields and increased production of the transcriptional activator protein, Gcn4, suggested that yields are subject to translational control. Analysis of the 5´ untranslated region (UTR) of FPS1 revealed two upstream open reading frames (uORFs). Mutagenesis data suggest that high yielding strains may circumvent these control elements through either a leaky scanning or a re-initiation mechanism. In the second theme, the dipeptide L-carnosine (ß-alanyl-L-histidine) was investigated: it has previously been shown to inhibit the growth of cancer cells but delay senescence in cultured human fibroblasts and extend the lifespan of male fruit flies. To understand these apparently contradictory properties, the effects of L-carnosine on yeast were studied. S. cerevisiae can respire aerobically when grown on a non-fermentable carbon source as a substrate but has a respiro-fermentative metabolism when grown on a fermentable carbon source; these metabolisms mimic normal cell and cancerous cell metabolisms, respectively. When yeast were grown on fermentable carbon sources, in the presence of L-carnosine, a reduction in cell growth and viability was observed, which was not apparent for cells grown on a non-fermentable carbon source. The metabolism-dependent mechanism was confirmed in the respiratory yeast species Pichia pastoris. Further analysis of S. cerevisiae yeast strains with deletions in their nutrient-sensing pathway, which result in an increase in respiratory metabolism, confirmed the metabolism-dependent effects of L-carnosine.
Resumo:
The sharing of product and process information plays a central role in coordinating supply chains operations and is a key driver for their success. "Linked pedigrees" - linked datasets, that encapsulate event based traceability information of artifacts as they move along the supply chain, provide a scalable mechanism to record and facilitate the sharing of track and trace knowledge among supply chain partners. In this paper we present "OntoPedigree" a content ontology design pattern for the representation of linked pedigrees, that can be specialised and extended to define domain specific traceability ontologies. Events captured within the pedigrees are specified using EPCIS - a GS1 standard for the specification of traceability information within and across enterprises, while certification information is described using PROV - a vocabulary for modelling provenance of resources. We exemplify the utility of OntoPedigree in linked pedigrees generated for supply chains within the perishable goods and pharmaceuticals sectors.
Resumo:
This thesis has sought to investigate disinfection agents and procedures which may provide sanitisation against bacterial spores. A hard-surface disinfection test method was designed to ascertain which combinations of biocide and application method were most effective against bacterial spores. A combination of spraying and wiping was the most effective method of disinfection against Bacillus spores, with wiping found to play a key role in spore removal. The most efficacious of the biocides investigated was the 6% hydrogen peroxide. Vaporised Hydrogen Peroxide (VHP) gassing was more effective than traditional disinfection. In addition to efficacy, the toxic potential of the biocides to human airway epithelial cells in vitro was evaluated. Toxicity against human bronchial and nasal epithelial cells was assessed by determining cell viability, inflammatory status, protein oxidation and epithelial cell layer integrity. In addition the cell death mechanism following biocide exposure was investigated. There was a decrease in viable cells following exposure to all biocides when applied at practical concentrations. Almost all of the biocides tested elicited a pro-inflammatory response from the cells as measured by IL-8 production. All biocides increased protein oxidation as measured by thiol and carbonyl levels. Measurement of transepithelial electrical resistance and paracellular permeability indicated biocide-dependent decrease in epithelial cell barrier function. The cellular response was biased towards necrotic rather than apoptotic death. The use of biocides, although efficacious to some effects against Bacillus spores, will require careful monitoring for adverse health effects on personnel.
Resumo:
The present dissertation investigates the influence of brand as well as substance-related marketing attributes on prescription pharmaceutical sales within a state-controlled market. For this purpose, a systematic literature review was conducted in the first instance, during which knowledge about the most relevant research within this field was gathered. Consequently, over 538 publications were reviewed and indicated as being potentially relevant, leading to an eventual count of 98 core publications. However, most of these studies had been conducted in the mainly unrestricted US market. These findings were then summarised and statistically evaluated. In a second step, based on the literature review, a qualitative study, containing focus and Delphi groups, was then performed. The participants in these studies were involved in pharmaceutical marketing within a state-controlled prescriptions pharmaceuticals market. Consequently, the findings were slightly different to those derived by the systematic literature review. Based on this second step, seven hypotheses were proposed. In the third step, these hypotheses were tested, using collected data and a secondary market dataset provided by a market research institute. A statistical analysis was then performed, applying descriptive as well as multiple regression analytical methods. The evaluation of the results resulted in a conceptual model of physician targeting, leading to several theoretical, methodological and managerial implications.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Conducts a strategic group mapping exercise by analysing R&D investment, sales/marketing cost and leadership information pertaining to the pharmaceuticals industry. Explains that strategic group mapping assists companies in identifying their principal competitors, and hence supports strategic decision-making, and shows that, in the pharmaceutical industry, R&D spending, the cost of sales and marketing, i.e. detailing, and technological leadership are mobility barriers to companies moving between sectors. Illustrates, in bubble-chart format, strategic groups in the pharmaceutical industry, plotting detailing-costs against the scale of activity in therapeutic areas. Places companies into 12 groups, and profiles the strategy and market-position similarities of the companies in each group. Concludes with three questions for companies to ask when evaluating their own, and their competitors, strategies and returns, and suggests that strategy mapping can be carried out in other industries, provided mobility barriers are identified.
Resumo:
At present there is not a reliable vaccine against herpes virus. Viral protein vaccines as yet have proved unsuccessful to meet the challenge of raising an appropriate immune response. Cantab Pharmaceuticals has produced a virus vaccine that can undergo one round of replication in the recipient in order to produce a more specific immune reaction. This virus is called Disabled Infectious Single Cycle Herpes Simplex Virus (DISC HSV) which has been derived by deleting the essential gH gene from a type 2 herpes virus. This vaccine has been proven to be effective in animal studies. Existing methods for the purification of viruses rely on laboratory techniques and for vaccine production would be on a far too small a scale. There is therefore a need for new virus purification methods to be developed in order to meet these large scale needs. An integrated process for the manufacture of a purified recombinant DISC HSV is described. The process involves culture of complementing Vero (CR2) cells, virus infection and manufacture, virus harvesting and subsequent downstream processing. The identification of suitable growth parameters for the complementing cell line and optimal limes for both infection and harvest are addressed. Various traditional harvest methods were investigated and found not to be suitable for a scaled up process. A method of harvesting, that exploits the elution of cell associated viruses by the competitive binding of exogenous heparin to virus envelope gC proteins, is described and is shown to yield significantly less contaminated process streams than sonication or osmotic approaches that involve cell rupture (with> 10-fold less complementing cell protein). High concentrations of salt (>0.8M NaCl) exhibit the same effect, although the high osmotic strength ruptures cells and increase the contamination of the process stream. This same heparin-gC protein affinity interaction is also shown to provide an efficient adsorptive purification procedure for herpes viruses which avoids the need to pre-treat the harvest material, apart from clarification, prior to chromatography. Subsequent column eluates provide product fractions with a 100-fold increase in virus titre and low levels of complementing cell protein and DNA (0.05 pg protein/pfu and 1.2 x 104 pg DNA/pfu respectively).
Resumo:
The preparation and characterisation of novel biodegradable polymer fibres for application in tissue engineering and drug delivery are reported. Poly(e-caprolactone) (PCL) fibres were produced by wet spinning from solutions in acetone under low shear (gravity flow) conditions. The tensile strength and stiffness of as-spun fibres were highly dependent on the concentration of the spinning solution. Use of a 6% w/v solution resulted in fibres having strength and stiffness of 1.8 MPa and 0.01 GPa respectively, whereas these values increased to 9.9 MPa and 0.1 GPa when fibres were produced from 20% w/v solutions. Cold drawing to an extension of 500% resulted in further increases in fibre strength (up to 50 MPa) and stiffness (0.3 GPa). Hot drawing to 500% further increased the fibre strength (up to 81 MPa) and stiffness (0.5 GPa). The surface morphology of as-spun fibres was modified, to yield a directional grooved pattern by drying in contact with a mandrel having a machined topography characterised by a peak-peak separation of 91 mm and a peak height of 30 mm. Differential scanning calorimetery (DSC) analysis of as-spun fibres revealed the characteristic melting point of PCL at around 58°C and a % crystallinity of approximately 60%. The biocompatibility of as-spun fibres was assessed using cell culture. The number of attached 3T3 Swiss mouse fibroblasts, C2C12 mouse myoblasts and human umbilical vein endothelial cells (HUVECs) on as-spun, 500% cold drawn, and gelatin coated PCL fibres were observed. The results showed that the fibres promoted cell proliferation for 9 days in cell culture and was slightly lower than on tissue culture plastic. The morphology of all cell lines was assessed on the various PCL fibres using scanning electron microscopy. The cell function of HUVECs growing on the as-spun PCL fibres was evaluated. The ability HUVECs to induce an immune response when stimulated with lipopolysaccaride (LPS) and thereby to increase the amount of cell surface receptors was assessed by flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR). The results showed that PCL fibres did not inhibit this function compared to TCP. As-spun PCL fibres were loaded with 1 % ovine albumin (OVA) powder, 1% OVA nanoparticles and 5% OVA nanoparticles by weight and the protein release was assessed in vitro. PCL fibres loaded with 1 % OVA powder released 70%, 1% OVA nanoparticle released 60% and the 5% OVA nanoparticle released 25% of their protein content over 28 days. These release figures did not alter when the fibres were subjected to lipase enzymatic degradation. The OVA released was examined for structural integrity by SDS-PAGE. This showed that the protein molecular weight was not altered after incorporation into the fibres. The bioactivity of progesterone was assessed following incorporation into PCL fibres. Results showed that the progesterone released had a pronounced effect on MCF-7 breast epithelial cells, inhibiting their proliferation. The PCL fibres display high fibre compliance, a potential for controlling the fibre surface architecture to promote contact guidance effects, favorable proliferation rate of fibroblasts, myoblasts and HUVECs and the ability to release pharmaceuticals. These properties recommended their use for 3-D scaffold production in soft tissue engineering and the fibres could also be exploited for controlled presentation and release of biopharmaceuticals such as growth factors.
Resumo:
The preparation and characterisation of collagen: PCL, gelatin: PCL and gelatin/collagen:PCL biocomposites for manufacture of tissue engineered skin substitutes are reported. Films of collagen: PLC, gelatin: PCL (1:4, 1:8 and 1:20 w/w) and gelatin/collagen:PCL (1:8 and 1:20 w/w) biocomposites were prepared by impregnation of lyophilised collagen and/or gelatin mats by PCL solutions followed by solvent evaporation. In vitro assays of total protein release of collagen:PCL and gelatin: PCL biocomposite films revealed an expected inverse relationship between the collagen release rate and the content of synthetic polymer in the biocomposite samples that may be exploited for controlled presentation and release of biopharmaceuticals such as growth factors. Good compatibility of all biocomposite groups was proven by interaction with 3T3 fibroblasts, normal human epidermal keratinocytes (NHEK), and primary human epidermal keratinocytes (PHEK) and dermal fibroblasts (PHDF) in vitro respectively. The 1:20 collagen: PCL materials exhibiting good cell growth curves and mechanical characteristics were selected for engineering of skin substitutes in this work. The tissue-engineered skin model based on single-donor PHEK and PHDF with differentiated confluent epidermal layer and fibrous porous dermal layer was then developed successfully in vitro proven by SEM and immunohistochemistry assay. The following in vivo animal study on athymic mice revealed early complete wound healing in 10 days and good integration of co-cultured skin substitutes with adjacent mice skin structures. Thus the co-cultured skin substitutes based on 1:20 collagen: PCL biocomposite membranes was proven in principle. The approach to skin modelling reported here may find application in wound treatment, gene therapy and screening of new pharmaceuticals.
Resumo:
This chapter explores the relationship between changes in strategy and environmental pressures within the UK Pharmaceutical Industry during a ten- year period. Two stable strategic time periods (SSTPs) were identified each of five years duration. Within each time period seven strategic groups were found but 11 out of 29 firms (37.9%) changed strategic groups membership during the period studied. The break between these two SSTPs was found to coincide with a sharp increase in the substitution of branded pharmaceuticals by cheaper parallel imports. A significant relationship was found between firms that changed groups and both their continent of origin and nationality. Firms whose home markets are more vulnerable to substitution were more likely to switch strategic groups. © 2011 Nova Science Publishers, Inc. All rights reserved.
Resumo:
As we settle into a new year, this second issue of Contact Lens and Anterior Eye allows us to reflect on how new research in this field impacts our understanding, but more importantly, how we use this evidence basis to enhance our day to day practice, to educate the next generation of students and to construct the research studies to deepen our knowledge still further. The end of 2014 saw the publication of the UK governments Research Exercise Framework (REF) which ranks Universities in terms of their outputs (which includes their paper, publications and research income), environment (infrastructure and staff support) and for the first time impact (defined as “any effect on, change or benefit to the economy, society, culture, public policy or services, health, the environment or quality of life, beyond academia” [8]). The REF is a process of expert review, carried out in 36 subject-based units of assessment, of which our field is typically submitted to the Allied Health, Dentistry, Nursing and Pharmacy panel. Universities that offer Optometry did very well with Cardiff, Manchester and Aston in the top 10% out of the 94 Universities that submitted to this panel (Grade point Average ranked order). While the format of the new exercise (probably in 2010) to allocate the more than £2 billion of UK government research funds is yet to be determined, it is already rumoured that impact will contribute an even larger proportion to the weighting. Hence it is even more important to reflect on the impact of our research. In this issue, Elisseef and colleagues [5] examine the intriguing potential of modifying a lens surface to allow it to bind to known wetting agents (in this case hyaluronic acid) to enhance water retention. Such a technique has the capacity to reduced friction between the lens surface and the eyelids/ocular surface, presumably leading to higher comfort and less reason for patients to discontinue with lens wear. Several papers in this issue report on the validity of new high precision, fast scanning imaging and quantification equipment, utilising techniques such as Scheimpflug, partial coherence interferometry, aberrometry and video allowing detailed assessment of anterior chamber biometry, corneal topography, corneal biomechanics, peripheral refraction, ocular aberrations and lens fit. The challenge is how to use this advanced instrumentation which is becoming increasingly available to create real impact. Many challenges in contact lenses and the anterior eye still prevail in 2015 such as: -While contact lens and refractive surgery complications are relatively rare, they are still too often devastating to the individual and their quality of life (such as the impact and prognosis of patients with Acanthmoeba Keratitis reported by Jhanji and colleagues in this issue [7]). How can we detect those patients who are going to be affected and what modifications do we need to make to contact lenses and patient management prevent this occurring? -Drop out from contact lenses still occurs at a rapid rate and symptoms of dry eye seem to be the leading cause driving this discontinuation of wear [1] and [2]. What design, coating, material and lubricant release mechanism will make a step change in end of day comfort in particular? -Presbyopia is a major challenge to hassle free quality vision and is one of the first signs of ageing noticed by many people. As an emmetrope approaching presbyopia, I have a vested interest in new medical devices that will give me high quality vision at all distances when my arms won’t stretch any further. Perhaps a new definition of presbyopia could be when you start to orientate your smartphone in the landscape direction to gain the small increase in print size needed to read! Effective accommodating intraocular lenses that truly mimic the pre-presbyopic crystalline lenses are still a way off [3] and hence simultaneous images achieved through contact lenses, intraocular lenses or refractive surgery still have a secure future. However, splitting light reaching the retina and requiring the brain to supress blurred images will always be a compromise on contrast sensitivity and is liable to cause dysphotopsia; so how will new designs account for differences in a patient's task demands and own optical aberrations to allow focused patient selection, optimising satisfaction? -Drug delivery from contact lenses offers much in terms of compliance and quality of life for patients with chronic ocular conditions such as glaucoma, dry eye and perhaps in the future, dry age-related macular degeneration; but scientific proof-of-concept publications (see EIShaer et al. [6]) have not yet led to commercial products. Part of this is presumably the regulatory complexity of combining a medical device (the contact lens) and a pharmaceutical agent. Will 2015 be the year when this innovation finally becomes a reality for patients, bringing them an enhanced quality of life through their eye care practitioners and allowing researchers to further validate the use of pharmaceutical contact lenses and propose enhancements as the technology matures? -Last, but no means least is the field of myopia control, the topic of the first day of the BCLA's Conference in Liverpool, June 6–9th 2015. The epidemic of myopia is a blight, particularly in Asia, with significant concerns over sight threatening pathology resulting from the elongated eye. This is a field where real impact is already being realised through new soft contact lens optics, orthokeratology and low dose pharmaceuticals [4], but we still need to be able to better predict which technique will work best for an individual and to develop new techniques to retard myopia progression in those who don’t respond to current treatments, without increasing their risk of complications or the treatment impacting their quality of life So what will your New Year's resolution be to make 2015 a year of real impact, whether by advancing science or applying the findings published in journals such as Contact Lens and Anterior Eye to make a real difference to your patients’ lives?
Resumo:
The ambitious and comprehensive Transatlantic Trade and Investment Partnership Agreement (TTIP/TAFTA) agreement between the European Union and United States is now being negotiated and may have far-reaching consequences for health services. The agreement extends to government procurement, investment, and further regulatory cooperation. In this article, we focus on the United Kingdom National Health Service and how these negotiations can limit policy space to change policies and to regulate in relation to health services, pharmaceuticals, medical devices, and health industries. The negotiation of TTIP/TAFTA has the potential to "harmonize" more corporate-friendly regulation, resulting in higher costs and loss of policy space, an example of "trade creep" that potentially compromises health equity, public health, and safety concerns across the Atlantic.