8 resultados para FETAL DEVELOPMENT

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Statin use inadvertently during pregnancy and proposed use of statins for the treatment of preeclampsia, led us to question the evidence behind their current contraindicated status. Several studies have evaluated the relationship between statin use in pregnancy with fetal outcome but their results have not been quantitatively assessed by meta-analysis. Our objective was to undertake a systematic review of all published clinical evidence to assess the effects of statin use in pregnancy on subsequent fetal wellbeing. METHODS: A comprehensive search strategy was performed of all electronic databases and the Merck reporting database for studies published from 1966 to 2014. Two reviewers independently screened citations and undertook study quality assessment and data extraction. We obtained summary estimates of adverse fetal events that were classified as potentially fatal, clinically significant morbidity or minor adverse event. We identified 602 titles and reviewed 30 articles for inclusion and exclusion criteria. Meta-analysis was performed on seven studies (3 cohort, 3 case-series and 1 case-control). RESULTS: Of the 922 cases of statin exposure in pregnancy, 27 exposures were associated with lethal or clinically significant fetal morbidity and 10 with minor adverse events. Statin exposure was limited to the first trimester in all but two cases. The pooled rate of lethal or clinically significant fetal abnormalities in pregnant women exposed to statins was 0.01 (95% CI 0.00-0.04), less than the European rate of 0.026 (95% CI 2.54- 2.57)EUROCAT. The rate of fetal abnormality for simvastatin was 0.03 (95% CI 0.00-0.08), atorvostatin 0.11 (95% CI 0.00-0.52), pravastatin 0.01 (95% CI 0.00-0.2) and lovastatin use 0.04 (95% CI 0.00-0.28). Systems based anomalies were also calculated, congenital heart disease was 0.8 (95% CI 0.02-0.12) compared with the background rate of 0.79 (95% CI 0.78- 0.80). CONCLUSIONS: The published data suggests that statins may not be teratogenic when given inadvertently during pregnancy and prospective studies such as The StAmP Trial may provide more data

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Maternal periconceptional (PC) nutrition, coupled with maternal physiological condition, can impact on reproductive performance and potential across mammalian species. Oocyte quality and embryo development are affected adversely by either nutrient restriction or excess. Moreover, the quality of maternal PC nutrition can have lasting effects through fetal development and postnatally into adulthood. Chronic disease, notably cardiovascular and metabolic disease, and abnormal behaviour have been identified in adult offspring in small and large animal models of PC nutrient restriction. These long-term effects associate with compensatory responses that begin from the time of early embryo development. This review assesses the field of PC nutrition in vivo on short- and long-term developmental consequences in rodent and ruminant models and considers the implications for human health. © IETS 2012.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The periconceptional period, embracing the terminal stages of oocyte growth and post-fertilisation development up to implantation, is sensitive to parental nutrition. Deficiencies or excesses in a range of macro- and micronutrients during this period can lead to impairments in fertility, fetal development and long-term offspring health. Obesity and genotype-related differences in regional adiposity are associated with impaired liver function and insulin resistance, and contribute to fatty acid-mediated impairments in sperm viability and oocyte and embryo quality, all of which are associated with endoplasmic reticulum stress and compromised fertility. Disturbances to maternal protein metabolism can elevate ammonium concentrations in reproductive tissues and disturb embryo and fetal development. Associated with this are disturbances to one-carbon metabolism, which can lead to epigenetic modifications to DNA and associated proteins in offspring that are both insulin resistant and hypertensive. Many enzymes involved in epigenetic gene regulation use metabolic cosubstrates (e.g. acetyl CoA and S-adenosyl methionine) to modify DNA and associated proteins, and so act as 'metabolic sensors' providing a link between parental nutritional status and gene regulation. Separate to their genomic contribution, spermatozoa can also influence embryo development via direct interactions with the egg and by seminal plasma components that act on oviductal and uterine tissues. © IETS 2014.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poor maternal nutrition during pregnancy can alter postnatal phenotype and increase susceptibility to adult cardiovascular and metabolic diseases. However, underlying mechanisms are largely unknown. Here, we show that maternal low protein diet (LPD), fed exclusively during mouse preimplantation development, leads to offspring with increased weight from birth, sustained hypertension, and abnormal anxiety-related behavior, especially in females. These adverse outcomes were interrelated with increased perinatal weight being predictive of later adult overweight and hypertension. Embryo transfer experiments revealed that the increase in perinatal weight was induced within blastocysts responding to preimplantation LPD, independent of subsequent maternal environment during later pregnancy. We further identified the embryo-derived visceral yolk sac endoderm (VYSE) as one mediator of this response. VYSE contributes to fetal growth through endocytosis of maternal proteins, mainly via the multiligand megalin (LRP2) receptor and supply of liberated amino acids. Thus, LPD maintained throughout gestation stimulated VYSE nutrient transport capacity and megalin expression in late pregnancy, with enhanced megalin expression evident even when LPD was limited to the preimplantation period. Our results demonstrate that in a nutrient-restricted environment, the preimplantation embryo activates physiological mechanisms of developmental plasticity to stablize conceptus growth and enhance postnatal fitness. However, activation of such responses may also lead to adult excess growth and cardiovascular and behavioral diseases. © 2008 by the Society for the Study of Reproduction, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian placentation is dependent upon the action of trophoblast cells at the time of implantation. Appropriate fetal growth, regulated by maternal nutrition and nutrient transport across the placenta, is a critical factor for adult offspring long-term health. We have demonstrated that a mouse maternal low-protein diet (LPD) fed exclusively during preimplantation development (Emb-LPD) increases offspring growth but programmes adult cardiovascular and metabolic disease. In this study, we investigate the impact of maternal nutrition on post-implantation trophoblast phenotype and fetal growth. Ectoplacental cone explants were isolated at day 8 of gestation from female mice fed either normal protein diet (NPD: 18% casein), LPD (9% casein) or Emb-LPD and cultured in vitro. We observed enhanced spreading and cell division within proliferative and secondary trophoblast giant cells (TGCs) emerging from explants isolated from LPD-fed females when compared with NPD and Emb-LPD explants after 24 and 48 h. Moreover, both LPD and Emb-LPD explants showed substantial expansion of TGC area during 24-48 h, not observed in NPD. No difference in invasive capacity was observed between treatments using Matrigel transwell migration assays. At day 17 of gestation, LPD- and Emb-LPD-fed conceptuses displayed smaller placentas and larger fetuses respectively, resulting in increased fetal:placental ratios in both groups compared with NPD conceptuses. Analysis of placental and yolk sac nutrient signalling within the mammalian target of rapamycin complex 1 pathway revealed similar levels of total and phosphorylated downstream targets across groups. These data demonstrate that early post-implantation embryos modify trophoblast phenotype to regulate fetal growth under conditions of poor maternal nutrition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background aims: The cost-effective production of human mesenchymal stromal cells (hMSCs) for off-the-shelf and patient specific therapies will require an increasing focus on improving product yield and driving manufacturing consistency. Methods: Bone marrow-derived hMSCs (BM-hMSCs) from two donors were expanded for 36 days in monolayer with medium supplemented with either fetal bovine serum (FBS) or PRIME-XV serum-free medium (SFM). Cells were assessed throughout culture for proliferation, mean cell diameter, colony-forming potential, osteogenic potential, gene expression and metabolites. Results: Expansion of BM-hMSCs in PRIME-XV SFM resulted in a significantly higher growth rate (P < 0.001) and increased consistency between donors compared with FBS-based culture. FBS-based culture showed an inter-batch production range of 0.9 and 5 days per dose compared with 0.5 and 0.6 days in SFM for each BM-hMSC donor line. The consistency between donors was also improved by the use of PRIME-XV SFM, with a production range of 0.9 days compared with 19.4 days in FBS-based culture. Mean cell diameter has also been demonstrated as a process metric for BM-hMSC growth rate and senescence through a correlation (R2 = 0.8705) across all conditions. PRIME-XV SFM has also shown increased consistency in BM-hMSC characteristics such as per cell metabolite utilization, in vitro colony-forming potential and osteogenic potential despite the higher number of population doublings. Conclusions: We have increased the yield and consistency of BM-hMSC expansion between donors, demonstrating a level of control over the product, which has the potential to increase the cost-effectiveness and reduce the risk in these manufacturing processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fetal growth restriction (FGR) is characterized by the birth weight and body mass below the tenth percentile for gestational age. FGR is a major cause of perinatal morbidity and mortality and babies born with FGR are prone to develop cardiovascular diseases later in life. The underlying pathology of FGR is inadequate placental transfer of nutrients from mother to fetus, which can be caused by placental insufficiency. Hydrogen sulfide (H2S), a gaseous messenger is produced endogenously by cystathionine-lyase (Cth), cystathionine-β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST), which are present in human placenta. Recently, we demonstrated that the dysregulation of H2S/Cth pathway is associated with preeclampsia and blockade of CSE activity induces preeclampsia-like condition in pregnant mice. We hypothesized that defect in H2S pathways promote FGR and H2S donor restores fetal growth in mice where CBS or CSE activity has been compromised. Western blotting and qPCR revealed that placental CBS expressions were significantly reduced in women with FGR. ELISA analysis showed reduced placental growth factor production (PlGF) from first trimester (8–12 weeks gestation) human placental explants following inhibition of CBS activity by aminooxyacetic acid (AOA). Administration of AOA to pregnant mice had no effects on blood pressure, but caused fetal growth restriction. This was associated with reduced PlGF production. Histological analysis revealed a reduction in the placental junction zone, within which trophoblast giant cells and glycogen cells were less prominent in CBS inhibitor treated mice. These results imply that placental CBS is required for placental development and that dysregulation of CBS activity may contribute to the pathogenesis of FGR but not preeclampsia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Fetal growth restriction (FGR), which causes perinatal morbidity and mortality, is characterized by birth weight and body mass being below 10th percentile for gestational age. FGR babies are prone to develop cardiovascular diseases later in life. Inadequate placental transfer of nutrients from mother to fetus due to placental insufficiency is considered the underlying cause of FGR. Recently, we demonstrated that blockade of cystathionine-γ-lyase (CSE) activity induces preeclampsia-like condition in pregnant mice. We hypothesized that defect in cystathionine-β-synthase (CBS) / H2S pathway may promote FGR. METHODS: Placental CBS expressions were determined in women with FGR (n=9) and normal controls (n=14) by Western blotting and real-time qPCR. ELISA was used to determine angiogenic factors levels in plasma and first-trimester (8–12 weeks gestation) human placental explants. Time pregnant mice were treated with CBS inhibitor, aminooxyacetic acid (AOA). Mean arterial blood pressure (MBP), histological assessments of placenta and embryos were performed. RESULTS: Placental CBS expressions were significantly reduced in women with FGR. Inhibition of CBS activity by AOA reduced PlGF production from first-trimester human placental explants, Administration of AOA to pregnant mice had no effects on blood pressure, but caused fetal growth restriction, which was associated with reduced placental PlGF production. Histological analysis revealed a reduction in the placental junction zone, within which trophoblast giant cells and glycogen cells were less prominent in CBS inhibitor-treated animals. Furthermore, H2S donor GYY4137 treatment restored fetal growth in pregnant mice exposed to high level of sFlt-1. CONCLUSIONS: These results imply that placental CBS is required for placental development and that dysregulation of CBS activity may contribute to the pathogenesis of FGR but not preeclampsia opening up the therapeutic potentials of H2S therapy in this condition.