236 resultados para FEMTOSECOND OPTICAL PULSES
em Aston University Research Archive
Resumo:
The fabrication of micro-channels in single-mode optical fibers is demonstrated using focused femtosecond laser processing and chemical etching. Straight line micro-channels are achieved based on a simple technique which overcomes limitations imposed by the fiber curved surface.
Resumo:
The fabrication of micro-channels in single-mode optical fibers is demonstrated using focused femtosecond laser processing and chemical etching. Straight line micro-channels are achieved based on a simple technique which overcomes limitations imposed by the fiber curved surface. © 2005 Optical Society of America.
Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses
Resumo:
A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.
Resumo:
This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.
Resumo:
By conducting point-by-point inscription in a continuously moving slab of pure fused silica at the optimal depth (170νm depth below the surface), we have fabricated a 250nm period nanostructure with 30nJ, 300fs, 1kHz pulses from a frequency-tripled Ti:sapphire laser. This is the smallest value for the inscribed period yet reported, and has been achieved with radical improvement in the quality of the inscribed nanostructures in comparison with previous reports.
Resumo:
We investigated the energy deposition process leading to the waveguide inscription in transparent dielectrics both experimentally and theoretically. Parameters of multiphoton absorption process and inscription thresholds were measured in a range of materials including YAG, ZnSe, RbPb2Cl5 crystals, and in fused silica and BK7 glasses.
Resumo:
We introduce the concept of noncoherent optical pulse discrimination from a coherent (or partially coherent) signal of the same energy using the phenomenon of soliton generation. The impact of randomization of the optical signal content on the observable characteristics of soliton generation is examined and quantified for the particular example of a rectangular pulse.
Resumo:
We develop a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrodinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.
Resumo:
We determine through numerical modelling the conditions for the generation of triangular-shaped optical pulses in a nonlinear, normally dispersive (ND) fibre and experimentally demonstrate triangular pulse formation in conventional ND fibre.
Resumo:
By conducting point-by-point inscription in a continuously moving slab of a pure fused silica at the optimal depth (170 μm depth below the surface), we have fabricated a 250-nm-period nanostructure with 30 nJ, 300 fs, 1 kHz pulses from frequency-tripled Ti:sapphire laser. This is the smallest value for the inscribed period yet reported, and has been achieved with radical improvement in the quality of the inscribed nanostructures in comparison with previous reports. The performed numerical modeling confirms the obtained experimental results.
Resumo:
We propose a new method for the generation of both triangular-shaped optical pulses and flat-top, coherent supercontinuum spectra using the effect of fourth-order dispersion on parabolic pulses in a passive, normally dispersive highly nonlinear fiber. The pulse reshaping process is described qualitatively and is compared to numerical simulations.
Resumo:
Recent developments in nonlinear optics reveal an interesting class of pulses with a parabolic intensity profile in the energy-containing core and a linear frequency chirp that can propagate in a fiber with normal group-velocity dispersion. Parabolic pulses propagate in a stable selfsimilar manner, holding certain relations (scaling) between pulse power, width, and chirp parameter. In the additional presence of linear amplification, they enjoy the remarkable property of representing a common asymptotic state (or attractor) for arbitrary initial conditions. Analytically, self-similar (SS) parabolic pulses can be found as asymptotic, approximate solutions of the nonlinear Schr¨odinger equation (NLSE) with gain in the semi-classical (largeamplitude/small-dispersion) limit. By analogy with the well-known stable dynamics of solitary waves - solitons, these SS parabolic pulses have come to be known as similaritons. In practical fiber systems, inherent third-order dispersion (TOD) in the fiber always introduces a certain degree of asymmetry in the structure of the propagating pulse, eventually leading to pulse break-up. To date, there is no analytic theory of parabolic pulses under the action of TOD. Here, we develop aWKB perturbation analysis that describes the effect of weak TOD on the parabolic pulse solution of the NLSE in a fiber gain medium. The induced perturbation in phase and amplitude can be found to any order. The theoretical model predicts with sufficient accuracy the pulse structural changes induced by TOD, which are observed through direct numerical NLSE simulations.
Resumo:
We analyze the steady-state propagation of optical pulses in fiber transmission systems with lumped nonlinear optical devices (NODs) placed periodically in the line. For the first time to our knowledge, a theoretical model is developed to describe the transmission regime with a quasilinear pulse evolution along the transmission line and the point action of NODs. We formulate the mapping problem for pulse propagation in a unit cell of the line and show that in the particular application to nonlinear optical loop mirrors, the steady-state pulse characteristics predicted by the theory accurately reproduce the results of direct numerical simulations.