19 resultados para FEC-koulutus

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper will look at the benefits and limitations of content distribution using Forward Error Correction (FEC) in conjunction with the Transmission Control Protocol (TCP). FEC can be used to reduce the number of retransmissions which would usually result from a lost packet. The requirement for TCP to deal with any losses is then greatly reduced. There are however side-effects to using FEC as a countermeasure to packet loss: an additional requirement for bandwidth. When applications such as real-time video conferencing are needed, delay must be kept to a minimum, and retransmissions are certainly not desirable. A balance, therefore, between additional bandwidth and delay due to retransmissions must be struck. Our results show that the throughput of data can be significantly improved when packet loss occurs using a combination of FEC and TCP, compared to relying solely on TCP for retransmissions. Furthermore, a case study applies the result to demonstrate the achievable improvements in the quality of streaming video perceived by end users.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate a 40 Gbit/s all-Raman amplified standard single mode fibre (SMF) transmission system with the mid-range amplifier spacing of 80-90 km. The impact of span configuration on double Rayleigh back scattering (DRBS) was studied. Four different span configurations were compared experimentally. A transmission distance of 1666 km in SMF has been achieved without forward error correcting (FEC) for the first time. The results demonstrate that the detrimental effects associated with high pump power Raman amplification in standard fibre can be minimised by dispersion map optimisation. © 2003 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a growing demand for data transmission over digital networks involving mobile terminals. An important class of data required for transmission over mobile terminals is image information such as street maps, floor plans and identikit images. This sort of transmission is of particular interest to the service industries such as the Police force, Fire brigade, medical services and other services. These services cannot be applied directly to mobile terminals because of the limited capacity of the mobile channels and the transmission errors caused by the multipath (Rayleigh) fading. In this research, transmission of line diagram images such as floor plans and street maps, over digital networks involving mobile terminals at transmission rates of 2400 bits/s and 4800 bits/s have been studied. A low bit-rate source encoding technique using geometric codes is found to be suitable to represent line diagram images. In geometric encoding, the amount of data required to represent or store the line diagram images is proportional to the image detail. Thus a simple line diagram image would require a small amount of data. To study the effect of transmission errors due to mobile channels on the transmitted images, error sources (error files), which represent mobile channels under different conditions, have been produced using channel modelling techniques. Satisfactory models of the mobile channel have been obtained when compared to the field test measurements. Subjective performance tests have been carried out to evaluate the quality and usefulness of the received line diagram images under various mobile channel conditions. The effect of mobile transmission errors on the quality of the received images has been determined. To improve the quality of the received images under various mobile channel conditions, forward error correcting codes (FEC) with interleaving and automatic repeat request (ARQ) schemes have been proposed. The performance of the error control codes have been evaluated under various mobile channel conditions. It has been shown that a FEC code with interleaving can be used effectively to improve the quality of the received images under normal and severe mobile channel conditions. Under normal channel conditions, similar results have been obtained when using ARQ schemes. However, under severe mobile channel conditions, the FEC code with interleaving shows better performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The contributions in this research are split in to three distinct, but related, areas. The focus of the work is based on improving the efficiency of video content distribution in the networks that are liable to packet loss, such as the Internet. Initially, the benefits and limitations of content distribution using Forward Error Correction (FEC) in conjunction with the Transmission Control Protocol (TCP) is presented. Since added FEC can be used to reduce the number of retransmissions, the requirement for TCP to deal with any losses is greatly reduced. When real-time applications are needed, delay must be kept to a minimum, and retransmissions not desirable. A balance, therefore, between additional bandwidth and delays due to retransmissions must be struck. This is followed by the proposal of a hybrid transport, specifically for H.264 encoded video, as a compromise between the delay-prone TCP and the loss-prone UDP. It is argued that the playback quality at the receiver often need not be 100% perfect, providing a certain level is assured. Reliable TCP is used to transmit and guarantee delivery of the most important packets. The delay associated with the proposal is measured, and the potential for use as an alternative to the conventional methods of transporting video by either TCP or UDP alone is demonstrated. Finally, a new objective measurement is investigated for assessing the playback quality of video transported using TCP. A new metric is defined to characterise the quality of playback in terms of its continuity. Using packet traces generated from real TCP connections in a lossy environment, simulating the playback of a video is possible, whilst monitoring buffer behaviour to calculate pause intensity values. Subjective tests are conducted to verify the effectiveness of the metric introduced and show that the results of objective and subjective scores made are closely correlated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents experimental investigation of different effects/techniques that can be used to upgrade legacy WDM communication systems. The main issue in upgrading legacy systems is that the fundamental setup, including components settings such as EDFA gains, does not need to be altered thus the improvement must be carried out at the network terminal. A general introduction to optical fibre communications is given at the beginning, including optical communication components and system impairments. Experimental techniques for performing laboratory optical transmission experiments are presented before the experimental work of this thesis. These techniques include optical transmitter and receiver designs as well as the design and operation of the recirculating loop. The main experimental work includes three different studies. The first study involves a development of line monitoring equipment that can be reliably used to monitor the performance of optically amplified long-haul undersea systems. This equipment can provide instant finding of the fault locations along the legacy communication link which in tum enables rapid repair execution to be performed hence upgrading the legacy system. The second study investigates the effect of changing the number of transmitted 1s and Os on the performance of WDM system. This effect can, in reality, be seen in some coding systems, e.g. forward-error correction (FEC) technique, where the proportion of the 1s and Os are changed at the transmitter by adding extra bits to the original bit sequence. The final study presents transmission results after all-optical format conversion from NRZ to CSRZ and from RZ to CSRZ using semiconductor optical amplifier in nonlinear optical loop mirror (SOA-NOLM). This study is mainly based on the fact that the use of all-optical processing, including format conversion, has become attractive for the future data networks that are proposed to be all-optical. The feasibility of the SOA-NOLM device for converting single and WDM signals is described. The optical conversion bandwidth and its limitations for WDM conversion are also investigated. All studies of this thesis employ 10Gbit/s single or WDM signals being transmitted over dispersion managed fibre span in the recirculating loop. The fibre span is composed of single-mode fibres (SMF) whose losses and dispersion are compensated using erbium-doped fibre amplifiers (EDFAs) and dispersion compensating fibres (DCFs), respectively. Different configurations of the fibre span are presented in different parts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we report field transmission of a 2Tbit/s multi-banded Coherent WDM signal over BT Ireland's installed SMF, using EDFA amplification only, with mixed Ethernet (with FEC) and PRBS payloads. To the best of our knowledge, the results obtained represent the highest total capacity transmitted over installed SMF with orthogonal subcarriers. BERs below 10(-5) and no frame-loss were recorded for all 49 subcarriers. Extended BER measurements over several hours showed fluctuations that can be attributed to PMD and to dynamic effects associated with clock instabilities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transmission of a 73.7 Tb/s (96x3x256-Gb/s) DP-16QAM mode-division-multiplexed signal over 119km of few-mode fiber transmission line incorporating an inline multi mode EDFA and a phase plate based mode (de-)multiplexer is demonstrated. Data-aided 6x6 MIMO digital signal processing was used to demodulate the signal. The total demonstrated net capacity, taking into account 20% of FEC-overhead and 7.5% additional overhead (Ethernet and training sequences), is 57.6 Tb/s, corresponding to a spectral efficiency of 12 bits/s/Hz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate electronic mitigation of linear and non-linear fibre impairments and compare various digital signal processing techniques, including electronic dispersion compensation (EDC), single-channel back-propagation (SC-BP) and back-propagation with multiple channel processing (MC-BP) in a nine-channel 112 Gb/s PM-mQAM (m=4,16) WDM system, for reaches up to 6,320 km. We show that, for a sufficiently high local dispersion, SC-BP is sufficient to provide a significant performance enhancement when compared to EDC, and is adequate to achieve BER below FEC threshold. For these conditions we report that a sampling rate of two samples per symbol is sufficient for practical SC-BP, without significant penalties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate 40x43Gbit/s RZ-DQPSK transmission over 1000km of ultra-low-loss G.652 fibre with 250km amplifier spacing. Hybrid Raman-EDFA amplification with co- and contra-directional Raman pumping enables 27dB Raman gain per span and error-free post-FEC performance. ©2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a novel approach to ultra-narrow optical filtering based on a specially designed slightly asymmetric filter, which can be fabricated using fibre Bragg gratings. A feasibility of 8×40 Gbit/s DWDM RZ transmission with 0.8 bit/s/Hz spectral efficiency (without polarisation multiplexing) over 1280 km of SMF/DCF link without FEC has been confirmed by numerical modelling. © 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relatively high phase noise of coherent optical systems poses unique challenges for forward error correction (FEC). In this letter, we propose a novel semianalytical method for selecting combinations of interleaver lengths and binary Bose-Chaudhuri-Hocquenghem (BCH) codes that meet a target post-FEC bit error rate (BER). Our method requires only short pre-FEC simulations, based on which we design interleavers and codes analytically. It is applicable to pre-FEC BER ∼10-3, and any post-FEC BER. In addition, we show that there is a tradeoff between code overhead and interleaver delay. Finally, for a target of 10-5, numerical simulations show that interleaver-code combinations selected using our method have post-FEC BER around 2× target. The target BER is achieved with 0.1 dB extra signal-to-noise ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN. This changes the error statistics and impacts FEC performance. In this paper, we propose a novel semianalytical method for dimensioning binary Bose-Chaudhuri-Hocquenghem (BCH) codes for systems with PN. Our method involves extracting statistics from pre-FEC bit error rate (BER) simulations. We use these statistics to parameterize a bivariate binomial model that describes the distribution of bit errors. In this way, we relate pre-FEC statistics to post-FEC BER and BCH codes. Our method is applicable to pre-FEC BER around 10-3 and any post-FEC BER. Using numerical simulations, we evaluate the accuracy of our approach for a target post-FEC BER of 10-5. Codes dimensioned with our bivariate binomial model meet the target within 0.2-dB signal-to-noise ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transmission of a 73.7 Tb/s (96x3x256-Gb/s) DP-16QAM mode-division- multiplexed signal over 119km of few-mode fiber transmission line incorporating an inline multi mode EDFA and a phase plate based mode (de-)multiplexer is demonstrated. Data-aided 6x6 MIMO digital signal processing was used to demodulate the signal. The total demonstrated net capacity, taking into account 20% of FEC-overhead and 7.5% additional overhead (Ethernet and training sequences), is 57.6 Tb/s, corresponding to a spectral efficiency of 12 bits/s/Hz. © 2012 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlinear Fourier transform (NFT) and eigenvalue communication with the use of nonlinear signal spectrum (both discrete and continuous), have been recently discussed as promising transmission methods to combat fiber nonlinearity impairments. In this paper, for the first time, we demonstrate the generation, detection and transmission performance over transoceanic distances of 10 Gbaud and nonlinear inverse synthesis (NIS) based signal (4 Gb/s line rate), in which the transmitted information is encoded directly onto the continuous part of the signal nonlinear spectrum. By applying effective digital signal processing techniques, a reach of 7344 km was achieved with a bit-error-rate (BER) (2.1×10-2) below the 20% FEC threshold. This represents an improvement by a factor of ~12 in data capacity x distance product compared with other previously demonstrated NFT-based systems, showing a significant advance in the active research area of NFT-based communication systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a hybrid TCP/UDP transport, specifically for H.264/AVC encoded video, as a compromise between the delay-prone TCP and the loss-prone UDP. When implementing the hybrid approach, we argue that the playback at the receiver often need not be 100% perfect, provided that a certain level of quality is assured. Reliable TCP is used to transmit and guarantee delivery of the most important packets. This allows use of additional features in the H.264/AVC standard which simultaneously provide an enhanced playback quality, in addition to a reduction in throughput. These benefits are demonstrated through experimental results using a test-bed to emulate the hybrid proposal. We compare the proposed system with other protection methods, such as FEC, and in one case show that for the same bandwidth overhead, FEC is unable to match the performance of the hybrid system in terms of playback quality. Furthermore, we measure the delay associated with our approach, and examine its potential for use as an alternative to the conventional methods of transporting video by either TCP or UDP alone. © 2011 IEEE.