16 resultados para FACTOR COMPLEX
em Aston University Research Archive
Resumo:
Proteins can undergo a wide variety of oxidative post-translational modifications (oxPTM); while reversible modifications are thought to be relevant in physiological processes, non-reversible oxPTM may contribute to pathological situations and disease. The oxidant is also important in determining the type of oxPTM, such as oxidation, chlorination or nitration. The best characterized oxPTMs involved in signalling modulation are partial oxidations of cysteine to disulfide, glutathionylated or sulfenic acid forms that can be reversed by thiol reductants. Proline hydroxylation in HIF signalling is also quite well characterized, and there is increasing evidence that specific oxidations of methionine and tyrosine may have some biological roles. For some proteins regulated by cysteine oxidation, the residues and molecular mechanism involved have been extensively studied and are well understood, such as the protein tyrosine phosphatase PTP1B and MAP3 kinase ASK1, as well as transcription factor complex Keap1-Nrf2. The advances in understanding of the role oxPTMs in signalling have been facilitated by advances in analytical technology, in particular tandem mass spectrometry techniques. Combinations of peptide sequencing by collisionally induced dissociation and precursor ion scanning or neutral loss to select for specific oxPTMs have proved very useful for identifying oxidatively modified proteins and mapping the sites of oxidation. The development of specific labelling and enrichment procedures for S-nitrosylation or disulfide formation has proved invaluable, and there is ongoing work to establish analogous methods for detection of nitrotyrosine and other modifications.
Resumo:
Experiments combining different groups or factors and which use ANOVA are a powerful method of investigation in applied microbiology. ANOVA enables not only the effect of individual factors to be estimated but also their interactions; information which cannot be obtained readily when factors are investigated separately. In addition, combining different treatments or factors in a single experiment is more efficient and often reduces the sample size required to estimate treatment effects adequately. Because of the treatment combinations used in a factorial experiment, the degrees of freedom (DF) of the error term in the ANOVA is a more important indicator of the ‘power’ of the experiment than the number of replicates. A good method is to ensure, where possible, that sufficient replication is present to achieve 15 DF for the error term of the ANOVA testing effects of particular interest. Finally, it is important to always consider the design of the experiment because this determines the appropriate ANOVA to use. Hence, it is necessary to be able to identify the different forms of ANOVA appropriate to different experimental designs and to recognise when a design is a split-plot or incorporates a repeated measure. If there is any doubt about which ANOVA to use in a specific circumstance, the researcher should seek advice from a statistician with experience of research in applied microbiology.
Resumo:
Signal integration determines cell fate on the cellular level, affects cognitive processes and affective responses on the behavioural level, and is likely to be involved in psychoneurobiological processes underlying mood disorders. Interactions between stimuli may subjected to time effects. Time-dependencies of interactions between stimuli typically lead to complex cell responses and complex responses on the behavioural level. We show that both three-factor models and time series models can be used to uncover such time-dependencies. However, we argue that for short longitudinal data the three factor modelling approach is more suitable. In order to illustrate both approaches, we re-analysed previously published short longitudinal data sets. We found that in human embryonic kidney 293 cells cells the interaction effect in the regulation of extracellular signal-regulated kinase (ERK) 1 signalling activation by insulin and epidermal growth factor is subjected to a time effect and dramatically decays at peak values of ERK activation. In contrast, we found that the interaction effect induced by hypoxia and tumour necrosis factor-alpha for the transcriptional activity of the human cyclo-oxygenase-2 promoter in HEK293 cells is time invariant at least in the first 12-h time window after stimulation. Furthermore, we applied the three-factor model to previously reported animal studies. In these studies, memory storage was found to be subjected to an interaction effect of the beta-adrenoceptor agonist clenbuterol and certain antagonists acting on the alpha-1-adrenoceptor / glucocorticoid-receptor system. Our model-based analysis suggests that only if the antagonist drug is administer in a critical time window, then the interaction effect is relevant.
Resumo:
beta-Hydroxy-beta-methylbutyrate (HMB; 50 microM) has been shown to attenuate the depression in protein synthesis in murine myotubes in response to lipopolysaccharide (LPS), tumor necrosis factor-alpha (TNF-alpha) with or without interferon-gamma (IFN-gamma), and angiotensin II (ANG II). The mechanism for the depression of protein synthesis by all three agents was the same and was attributed to activation of double-stranded RNA-dependent protein kinase (PKR) with the subsequent phosphorylation of eukaryotic initiation factor 2 (eIF2) on the alpha-subunit as well as increased phosphorylation of the elongation factor (eEF2). Myotubes expressing a catalytically inactive PKR variant, PKRDelta6, showed no depression of protein synthesis in response to either LPS or TNF-alpha, confirming the importance of PKR in this process. There was no effect of any of the agents on phosphorylation of mammalian target of rapamycin (mTOR) or initiation factor 4E-binding protein (4E-BP1), and thus no change in the amount of eIF4E bound to 4E-BP1 or the concentration of the active eIF4E.eIF4G complex. HMB attenuated phosphorylation of eEF2, possibly by increasing phosphorylation of mTOR, and also attenuated phosphorylation of eIF2alpha by preventing activation of PKR. These results suggest that HMB may be effective in attenuating muscle atrophy in a range of catabolic conditions.
Resumo:
Proteolysis-inducing factor (PIF) is a sulphated glycoprotein produced by cachexia-inducing tumours, which initiates muscle protein degradation through an increased expression of the ubiquitin–proteasome proteolytic pathway. The role of kinase C (PKC) in PIF-induced proteasome expression has been studied in murine myotubes as a surrogate model of skeletal muscle. Proteasome expression induced by PIF was attenuated by 4alpha-phorbol 12-myristate 13-acetate (100 nM) and by the PKC inhibitors Ro31-8220 (10 muM), staurosporine (300 nM), calphostin C (300 nM) and Gö 6976 (200 muM). Proteolysis-inducing factor-induced activation of PKCalpha, with translocation from the cytosol to the membrane at the same concentration as that inducing proteasome expression, and this effect was attenuated by calphostin C. Myotubes transfected with a constitutively active PKCalpha (pCO2) showed increased expression of proteasome activity, and a longer time course, compared with their wild-type counterparts. In contrast, myotubes transfected with a dominant-negative PKCalpha (pKS1), which showed no activation of PKCalpha in response to PIF, exhibited no increase in proteasome activity at any time point. Proteolysis-inducing factor-induced proteasome expression has been suggested to involve the transcription factor nuclear factor-kappaB (NF-kappaB), which may be activated through PKC. Proteolysis-inducing factor induced a decrease in cytosolic I-kappaBalpha and an increase in nuclear binding of NF-kappaB in pCO2, but not in pKS1, and the effect in wild-type cells was attenuated by calphostin C, confirming that it was mediated through PKC. This suggests that PKC may be involved in the phosphorylation and degradation of I-kappaBalpha, induced by PIF, necessary for the release of NF-kappaB from its inactive cytosolic complex.
Resumo:
Proteolysis-inducing factor (PIF), isolated from a cachexia-inducing murine tumour, has been shown to stimulate protein breakdown in C 2C12 myotubes. The effect was attenuated by the specific proteasome inhibitor lactacystin and there was an elevation of proteasome 'chymotrypsin-like' enzyme activity and expression of 205 proteasome α-subunits at concentrations of PIF between 2 and 16 nM. Higher concentrations of PIF had no effect. The action of PIF was attenuated by eicosapentaenoic acid (EPA) (50 μM). At a concentration of 4 nM, PIF induced a transient decrease in IκBα levels after 30 min incubation, while no effect was seen at 20 nM PIF. The level of IκBα, an NF-κB inhibitory protein, returned to normal after 60 min. Depletion of IκBα from the cytosol was not seen in myotubes pretreated with EPA, suggesting that the NF-κB/IκB complex was stabilised. At concentrations between 2 and 8 nM, PIF stimulated an increased nuclear migration of NF-κB, which was not seen in myotubes pretreated with EPA. The PIF-induced increase in chymotrypsin-like enzyme activity was also attenuated by the NF-κB inhibitor peptide SN50, suggesting that NF-κB may be involved in the PIF-induced increase in proteasome expression. The results further suggest that EPA may attenuate protein degradation induced by PIF, at least partly, by preventing NF-κB accumulation in the nucleus. © 2003 Cancer Research UK.
Resumo:
The mechanism of muscle protein catabolism induced by proteolysis-inducing factor, produced by cachexia-inducing murine and human tumours has been studied in vitro using C2C12 myoblasts and myotubes. In both myoblasts and myotubes protein degradation was enhanced by proteolysis-inducing factor after 24 h incubation. In myoblasts this followed a bell-shaped dose-response curve with maximal effects at a proteolysis-inducing factor concentration between 2 and 4 nM, while in myotubes increased protein degradation was seen at all concentrations of proteolysis-inducing factor up to 10 nM, again with a maximum of 4 nM proteolysis-inducing factor. Protein degradation induced by proteolysis-inducing factor was completely attenuated in the presence of cycloheximide (1 μM), suggesting a requirement for new protein synthesis. In both myoblasts and myotubes protein degradation was accompanied by an increased expression of the α-type subunits of the 20S proteasome as well as functional activity of the proteasome, as determined by the 'chymotrypsin-like' enzyme activity. There was also an increased expression of the 19S regulatory complex as well as the ubiquitin-conjugating enzyme (E214k), and in myotubes a decrease in myosin expression was seen with increasing concentrations of proteolysis-inducing factor. These results show that proteolysis-inducing factor co-ordinately upregulates both ubiquitin conjugation and proteasome activity in both myoblasts and myotubes and may play an important role in the muscle wasting seen in cancer cachexia. © 2002 Cancer Research UK.
Resumo:
Background. Diabetic nephropathy is the leading cause of end-stage kidney failure worldwide. It is characterized by excessive extracellular matrix accumulation. Transforming growth factor beta 1 (TGF-ß1) is a fibrogenic cytokine playing a major role in the healing process and scarring by regulating extracellular matrix turnover, cell proliferation and epithelial mesanchymal transdifferentiation. Newly synthesized TGF-ß is released as a latent, biologically inactive complex. The cross-linking of the large latent TGF-ß to the extracellular matrix by transglutaminase 2 (TG2) is one of the key mechanisms of recruitment and activation of this cytokine. TG2 is an enzyme catalyzing an acyl transfer reaction leading to the formation of a stable e(?-glutamyl)-lysine cross-link between peptides.Methods. To investigate if changes in TG activity can modulate TGF-ß1 activation, we used the mink lung cell bioassay to assess TGF-ß activity in the streptozotocin model of diabetic nephropathy treated with TG inhibitor NTU281 and in TG2 overexpressing opossum kidney (OK) proximal tubular epithelial cells.Results. Application of the site-directed TG inhibitor NTU281 caused a 25% reduction in kidney levels of active TGF-ß1. Specific upregulation of TG2 in OK proximal tubular epithelial cells increased latent TGF-ß recruitment and activation by 20.7% and 19.7%, respectively, in co-cultures with latent TGF-ß binding protein producing fibroblasts.Conclusions. Regulation of TG2 directly influences the level of active TGF-ß1, and thus, TG inhibition may exert a renoprotective effect by targeting not only a direct extracellular matrix deposition but also TGF-ß1 activation and recruitment.
Resumo:
PCA/FA is a method of analyzing complex data sets in which there are no clearly defined X or Y variables. It has multiple uses including the study of the pattern of variation between individual entities such as patients with particular disorders and the detailed study of descriptive variables. In most applications, variables are related to a smaller number of ‘factors’ or PCs that account for the maximum variance in the data and hence, may explain important trends among the variables. An increasingly important application of the method is in the ‘validation’ of questionnaires that attempt to relate subjective aspects of a patients experience with more objective measures of vision.
Resumo:
This thesis studied the effect of (i) the number of grating components and (ii) parameter randomisation on root-mean-square (r.m.s.) contrast sensitivity and spatial integration. The effectiveness of spatial integration without external spatial noise depended on the number of equally spaced orientation components in the sum of gratings. The critical area marking the saturation of spatial integration was found to decrease when the number of components increased from 1 to 5-6 but increased again at 8-16 components. The critical area behaved similarly as a function of the number of grating components when stimuli consisted of 3, 6 or 16 components with different orientations and/or phases embedded in spatial noise. Spatial integration seemed to depend on the global Fourier structure of the stimulus. Spatial integration was similar for sums of two vertical cosine or sine gratings with various Michelson contrasts in noise. The critical area for a grating sum was found to be a sum of logarithmic critical areas for the component gratings weighted by their relative Michelson contrasts. The human visual system was modelled as a simple image processor where the visual stimuli is first low-pass filtered by the optical modulation transfer function of the human eye and secondly high-pass filtered, up to the spatial cut-off frequency determined by the lowest neural sampling density, by the neural modulation transfer function of the visual pathways. The internal noise is then added before signal interpretation occurs in the brain. The detection is mediated by a local spatially windowed matched filter. The model was extended to include complex stimuli and its applicability to the data was found to be successful. The shape of spatial integration function was similar for non-randomised and randomised simple and complex gratings. However, orientation and/or phase randomised reduced r.m.s contrast sensitivity by a factor of 2. The effect of parameter randomisation on spatial integration was modelled under the assumption that human observers change the observer strategy from cross-correlation (i.e., a matched filter) to auto-correlation detection when uncertainty is introduced to the task. The model described the data accurately.
Resumo:
Investment in capacity expansion remains one of the most critical decisions for a manufacturing organisation with global production facilities. Multiple factors need to be considered making the decision process very complex. The purpose of this paper is to establish the state-of-the-art in multi-factor models for capacity expansion of manufacturing plants within a corporation. The research programme consisting of an extensive literature review and a structured assessment of the strengths and weaknesses of the current research is presented. The study found that there is a wealth of mathematical multi-factor models for evaluating capacity expansion decisions however no single contribution captures all the different facets of the problem.
Resumo:
Purpose: To investigate whether modification of liver complement factor H (CFH) production, by alteration of liver CFH Y402H genotype through liver transplantation (LT), influences the development of age-related macular degeneration (AMD). Design: Multicenter, cross-sectional study. Participants: We recruited 223 Western European patients ≥55 years old who had undergone LT ≥5 years previously. Methods: We determined AMD status using a standard grading system. Recipient CFH Y402H genotype was obtained from DNA extracted from recipient blood samples. Donor CFH Y402H genotype was inferred from recipient plasma CFH Y402H protein allotype, measured using enzyme-linked immunosorbent assays. This approach was verified by genotyping donor tissue from a subgroup of patients. Systemic complement activity was ascertained by measuring levels of plasma complement proteins using an enzyme-linked immunosorbent assay, including substrates (C3, C4), activation products (C3a, C4a, and terminal complement complex), and regulators (total CFH, C1 inhibitor). Main Outcome Measures: We evaluated AMD status and recipient and donor CFH Y402H genotype. Results: In LT patients, AMD was associated with recipient CFH Y402H genotype (P = 0.036; odds ratio [OR], 1.6; 95% confidence interval [CI], 1.0-2.4) but not with donor CFH Y402H genotype (P = 0.626), after controlling for age, sex, smoking status, and body mass index. Recipient plasma CFH Y402H protein allotype predicted donor CFH Y402H genotype with 100% accuracy (n = 49). Plasma complement protein or activation product levels were similar in LT patients with and without AMD. Compared with previously reported prevalence figures (Rotterdam Study), LT patients demonstrated a high prevalence of both AMD (64.6% vs 37.1%; OR, 3.09; P<0.001) and the CFH Y402H sequence variation (41.9% vs 36.2%; OR, 1.27; P = 0.014). Conclusions: Presence of AMD is not associated with modification of hepatic CFH production. In addition, AMD is not associated with systemic complement activity in LT patients. These findings suggest that local intraocular complement activity is of greater importance in AMD pathogenesis. The high AMD prevalence observed in LT patients may be associated with the increased frequency of the CFH Y402H sequence variation. © 2013 by the American Academy of Ophthalmology Published by Elsevier Inc.
Resumo:
Oxygen is a crucial molecule for cellular function. When oxygen demand exceeds supply, the oxygen sensing pathway centred on the hypoxia inducible factor (HIF) is switched on and promotes adaptation to hypoxia by up-regulating genes involved in angiogenesis, erythropoiesis and glycolysis. The regulation of HIF is tightly modulated through intricate regulatory mechanisms. Notably, its protein stability is controlled by the oxygen sensing prolyl hydroxylase domain (PHD) enzymes and its transcriptional activity is controlled by the asparaginyl hydroxylase FIH (factor inhibiting HIF-1).To probe the complexity of hypoxia-induced HIF signalling, efforts in mathematical modelling of the pathway have been underway for around a decade. In this paper, we review the existing mathematical models developed to describe and explain specific behaviours of the HIF pathway and how they have contributed new insights into our understanding of the network. Topics for modelling included the switch-like response to decreased oxygen gradient, the role of micro environmental factors, the regulation by FIH and the temporal dynamics of the HIF response. We will also discuss the technical aspects, extent and limitations of these models. Recently, HIF pathway has been implicated in other disease contexts such as hypoxic inflammation and cancer through crosstalking with pathways like NF?B and mTOR. We will examine how future mathematical modelling and simulation of interlinked networks can aid in understanding HIF behaviour in complex pathophysiological situations. Ultimately this would allow the identification of new pharmacological targets in different disease settings.
Resumo:
Leukemia inhibitory factor (LIF) and its receptor (LIFR) are "twins" of Oncostatin M (OSM) and OSMR, respectively, likely having arisen through gene duplications. We compared their effects in a bone nodule-forming model of in vitro osteogenesis, rat calvaria (RC) cell cultures. Using a dominant-negative LIF mutant (hLIF-05), we showed that in RC cell cultures mouse OSM (mOSM) activates exclusively glycoprotein 130 (gp130)/OSMR. In treatments starting at early nodule formation stage, LIF, mOSM, IL-11, and IL-6 + sIL-6R inhibit bone nodule formation, that is, osteoprogenitor differentiation. Treatment with mOSM, and no other cytokine of the family, in early cultures (day 1-3 or 1-4) increases bone colony numbers. hLIF-05 also dose dependently stimulates bone nodule formation, confirming the inhibitory action of gp130/LIFR on osteogenesis. In pulse treatments at successive stages of bone nodule formation and maturation, LIF blocks osteocalcin (OCN) expression by differentiated osteoblasts, but has no effect on bonesialoprotein (BSP) expression. Mouse OSM inhibits OCN and BSP expression in preconfluent cultures with no or progressively reduced effects at later stages, reflecting the disruption of early nodules, possibly due to the strong apoptotic action of mOSM in RC cell cultures. In summary, LIFR and OSMR display differential effects on differentiation and phenotypic expression of osteogenic cells, most likely through different signal transduction pathways. In particular, gp130/OSMR is the only receptor complex of the family to stimulate osteoprogenitor differentiation in the RC cell culture model. © 2005 Wiley-Liss, Inc.
Resumo:
The universally conserved translation elongation factor EF-Tu delivers aminoacyl(aa)-tRNA in the form of an aa-tRNA·EF-Tu·GTP ternary complex (TC) to the ribosome where it binds to the cognate mRNA codon within the ribosomal A-site, leading to formation of a pretranslocation (PRE) complex. Here we describe preparation of QSY9 and Cy5 derivatives of the variant E348C-EF-Tu that are functional in translation elongation. Together with fluorophore derivatives of aa-tRNA and of ribosomal protein L11, located within the GTPase associated center (GAC), these labeled EF-Tus allow development of two new FRET assays that permit the dynamics of distance changes between EF-Tu and both L11 (Tu-L11 assay) and aa-tRNA (Tu-tRNA assay) to be determined during the decoding process. We use these assays to examine: (i) the relative rates of EF-Tu movement away from the GAC and from aa-tRNA during decoding, (ii) the effects of the misreading-inducing antibiotics streptomycin and paromomycin on tRNA selection at the A-site, and (iii) how strengthening the binding of aa-tRNA to EF-Tu affects the rate of EF-Tu movement away from L11 on the ribosome. These FRET assays have the potential to be adapted for high throughput screening of ribosomal antibiotics.