55 resultados para FABRIC-EVOKED PRICKLE

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study used magnetoencephalography (MEG) to examine the dynamic patterns of neural activity underlying the auditory steady-state response. We examined the continuous time-series of responses to a 32-Hz amplitude modulation. Fluctuations in the amplitude of the evoked response were found to be mediated by non-linear interactions with oscillatory processes both at the same source, in the alpha and beta frequency bands, and in the opposite hemisphere. © 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background & Aims: Current models of visceral pain processing derived from metabolic brain imaging techniques fail to differentiate between exogenous (stimulus-dependent) and endogenous (non-stimulus-specific) neural activity. The aim of this study was to determine the spatiotemporal correlates of exogenous neural activity evoked by painful esophageal stimulation. Methods: In 16 healthy subjects (8 men; mean age, 30.2 ± 2.2 years), we recorded magnetoencephalographic responses to 2 runs of 50 painful esophageal electrical stimuli originating from 8 brain subregions. Subsequently, 11 subjects (6 men; mean age, 31.2 ± 1.8 years) had esophageal cortical evoked potentials recorded on a separate occasion by using similar experimental parameters. Results: Earliest cortical activity (P1) was recorded in parallel in the primary/secondary somatosensory cortex and posterior insula (∼85 ms). Significantly later activity was seen in the anterior insula (∼103 ms) and cingulate cortex (∼106 ms; P = .0001). There was no difference between the P1 latency for magnetoencephalography and cortical evoked potential (P = .16); however, neural activity recorded with cortical evoked potential was longer than with magnetoencephalography (P = .001). No sex differences were seen for psychophysical or neurophysiological measures. Conclusions: This study shows that exogenous cortical neural activity evoked by experimental esophageal pain is processed simultaneously in somatosensory and posterior insula regions. Activity in the anterior insula and cingulate - brain regions that process the affective aspects of esophageal pain - occurs significantly later than in the somatosensory regions, and no sex differences were observed with this experimental paradigm. Cortical evoked potential reflects the summation of cortical activity from these brain regions and has sufficient temporal resolution to separate exogenous and endogenous neural activity. © 2005 by the American Gastroenterological Association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rectum has a unique physiological role as a sensory organ and differs in its afferent innervation from other gut organs that do not normally mediate conscious sensation. We compared the central processing of human esophageal, duodenal, and rectal sensation using cortical evoked potentials (CEP) in 10 healthy volunteers (age range 21-34 yr). Esophageal and duodenal CEP had similar morphology in all subjects, whereas rectal CEP had two different but reproducible morphologies. The rectal CEP latency to the first component P1 (69 ms) was shorter than both duodenal (123 ms; P = 0.008) and esophageal CEP latencies (106 ms; P = 0.004). The duodenal CEP amplitude of the P1-N1 component (5.0 µV) was smaller than that of the corresponding esophageal component (5.7 µV; P = 0.04) but similar to that of the corresponding rectal component (6.5 µV; P = 0.25). This suggests that rectal sensation is either mediated by faster-conducting afferent pathways or that there is a difference in the orientation or volume of cortical neurons representing the different gut organs. In conclusion, the physiological and anatomic differences between gut organs are reflected in differences in the characteristics of their afferent pathways and cortical processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parkinson's disease (PD) is associated with enhanced synchronization of neuronal network activity in the beta (15-30 Hz) frequency band across several nuclei of the basal ganglia (BG). Deep brain stimulation of the subthalamic nucleus (STN) appears to reduce this pathological oscillation, thereby alleviating PD symptoms. However, direct stimulation of primary motor cortex (M1) has recently been shown to be effective in reducing symptoms in PD, suggesting a role for cortex in patterning pathological rhythms. Here, we examine the properties of M1 network oscillations in coronal slices taken from rat brain. Oscillations in the high beta frequency range (layer 5, 27.8 +/- 1.1 Hz, n=6) were elicited by co-application of the glutamate receptor agonist kainic acid (400 nM) and muscarinic receptor agonist carbachol (50 mu M). Dual extracellular recordings, local application of tetrodotoxin and recordings in M1 micro-sections indicate that the activity originates within deep layers V/VI. Beta oscillations were unaffected by specific AMPA receptor blockade, abolished by the GABA type A receptor (GABAAR) antagonist picrotoxin and the gap-junction blocker carbenoxolone, and modulated by pentobarbital and zolpidem indicating dependence on networks of GABAergic interneurons and electrical coupling. High frequency stimulation (HFS) at 125 Hz in superficial layers, designed to mimic transdural/transcranial stimulation, generated gamma oscillations in layers 11 and V (incidence 95%, 69.2 +/- 7.3 Hz, n=17) with very fast oscillatory components (VFO; 100-250 Hz). Stimulation at 4 Hz, however, preferentially promoted theta activity (incidence 62.5%, 5.1 +/- 0.6 Hz, n=15) that effected strong amplitude modulation of ongoing beta activity. Stimulation at 20 Hz evoked mixed theta and gamma responses. These data suggest that within M1, evoked theta, gamma and fast oscillations may coexist with and in some cases modulate pharmacologically induced beta oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The latency variation of the P100M from minute to minute, between morning and afternoon and from day to day was investigated in an unshielded environment using two single channel magnetometers. Latency variation was greatest from minute to minute with relatively little longer term variation. The two magnetometers differed both in mean latency and in the degree of variation. This may be attributed to variation in the performance of the filters which were set a narrow bandwidth for recording in an unshielded environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decrease in the check size of a pattern shift stimulus increases the latency and amplitude of the visual evoked potential (VEP) P100. In addition, for a given check size, decreasing the size of the stimulus field increases the latency and amplitude of the P100. These results imply that the central regions of the retina make a significant contribution to the generation of the electrical P100. However, the corresponding magnetic P100m may have a different origin. We have studied the effects of check and field size on the P100m in five normal subjects using a DC-Squid, second-order gradiometer. Magnetic responses were recorded at the positive maximum of the P100m over the occipital scalp to six check sizes (10-100') presented in a large (13 degrees 34') and small (5 degrees 14') field and to a large check (100') presented in seven field sizes (1 degree 45' - 15 degrees 10'). No responses were recorded to any check size with a small field. Decreasing the check size presented in a large field increased latency of the P100m by approx. 30 ms while the amplitude of the response decreased with the largest reduction occurring between 70' and 12' checks. Using a large check, latency increased and amplitude decreased as the field size was reduced. The latency changes in response to check and field size were similar to those described for the VEP although the magnitudes of the magnetic changes were greater. Unlike the VEP, amplitude responses were maximal when large checks were presented in a large stimulus field. This suggests that regions outside the central retina make a more significant contribution to the visual evoked magnetic response than they do to the VEP, and that the P100m may be useful clinically in the study of diseases that affect the more peripheral regions of the retina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analysed evoked magnetic responses to moving random dot stimuli, initially using a 19-channel magnetoencephalography (MEG) system, and subsequently using a 151-channel MEG system. Random dot displays were used to construct complex motion sequences, which we refer to as expansion, contraction, deformation, and rotation. We also investigated lateral translation and a condition in which the directions of the dots were randomised. In all stimulus conditions, the dots were first stationary, then traveled for a brief period (317s or 542 ms), and were then stationary again. In all conditions, evoked magnetic responses were observed with a widespread bilateral distribution over the observers' heads. Initial recordings revealed a substantially larger evoked magnetic response to the expansion condition than the other conditions. In a revised study, we used a 151-channel MEG system and two stimulus diameters (9.3 and 48 deg), the smaller comparable with the first experiment. The responses were analysed using a nonparametric approach and confirmed our initial observations. In a third study, speed gradients were removed and a new design permitted direct comparisons between motion conditions. The results from all three experiments are consistent with the greater ecological validity of the expansion stimulus. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The density of senile plaques (SP) and neurofibrillary tangles (NFT) was estimated at post-mortem in areas B17 and B18 of the visual cortex in 18 Alzheimer’s disease (AD) cases which varied in disease onset and duration. The density of SP in B17 and NFT in B17 and B18 declined significantly with age at death of the patient. The density of SP and NFT was greater in B18 than B17 but only in cases of earlier onset and shorter duration. The pathological differences between B17 and B18 could explain the visual evoked responses (VER) that have been reported in AD. However, the differences were small, and changes in the afferent pathways remain the most likely explanation for the VER in AD. © 1994 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topography of the visual evoked magnetic response (VEMR) to a pattern onset stimulus was studied in five normal subjects using a single channel BTi magnetometer. Topographic distributions were analysed at regular intervals following stimulus onset (chronotopograpby). Two distinct field distributions were observed with half field stimulation: (1) activity corresponding to the C11 m which remains stable for an average of 34 msec and (2) activity corresponding to the C111 m which remains stable for about 50 msec. However, the full field topography of the largest peak within the first 130 msec does not have a predictable latency or topography in different subjects. The data suggest that the appearance of this peak is dependent on the amplitude, latency and duration of the half field C11 m peaks and the efficiency of half field summation. Hence, topographic mapping is essential to correctly identify the C11 m peak in a full field response as waveform morphology, peak latency and polarity are not reliable indicators. © 1993.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visual evoked magnetic response to half-field stimulation using pattern reversal was studied using a d.c. SQUID coupled to a second order gradiometer. The main component of the magnetic response consisted of a positive wave at around 100 ms (P100M). At the time this component was present the response to half-field stimulation consisted of an outgoing magnetic field contralateral and extending to the midline. When the left half field was stimulated the outgoing field was over the posterior right visual cortex and when the right half field was stimulated it was over the left anterior visual cortex. These findings would correctly identify a source located in the contralateral visual cortex. The orientation of the dipoles was not that previously assumed to explain the paradoxical lateralization of the visual evoked potential. The results are discussed in terms of both electrical and magnetic models of the calcarine fissure. © 1992.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topography of the visual evoked magnetic response (VEMR) to a pattern onset stimulus was investigated using 4 check sizes and 3 contrast levels. The pattern onset response consists of three early components within the first 200ms, CIm, CIIm and CIIIm. The CIIm is usually of high amplitude and is very consistent in latency within a subject. Half field (HF) stimuli produce their strongest response over the contralateral hemisphere; the RHF stimulus exhibiting a lower positivity (outgoing field) and an upper negativity (ingoing field), rotated towards the midline. LHF stimulation produced the opposite response, a lower negative and an upper positive. Larger check sizes produce a single area of ingoing and outgoing field while smaller checks produce on area of ingoing and outgoing field over each hemisphere. Latency did not appear to vary with change in contrast but amplitudes increased with increasing contrast. A more detailed topographic study incorporating source localisation procedures suggested a source for CIIm - 4cm below the scalp, close to the midline with current flowing towards the lateral surface. Similar depth and position estimates but with opposite polarity were obtained for the pattern shift P100m previously. Hence, the P100m and the CIIm may originate in similar areas of visual cortex but reveal different aspects of visual processing. © 1992 Human Sciences Press, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visual evoked magnetic response (VEMR) was measured over the occipital cortex to pattern and flash stimuli in 86 normal subjects aged 15-86 years. The latency of the major positive component (outgoing magnetic field) to the pattern reversal stimulus (P100M) increased with age, particularly after 55 years, while the amplitude of the P100M decreased more gradually over the lifespan. By contrast, the latency of the major positive component to the flash stimulus (P2M) increased more slowly with age after about 50 years, while its amplitude may have decreased in only a proportion of the elderly subjects. The changes in the P100M with age may reflect senile changes in the eye and optic nerve, e.g. senile miosis, degenerative changes in the retina or geniculostriate deficits. The P2M may be more susceptible to senile changes in the visual cortex. The data suggest that the contrast channels of visual information processing deteriorate more rapidly with age than the luminance channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practicality of recording visual evoked magnetic fields in 100 subjects 15-87 yr of age using a single channel d.c. SQUID second order gradiometer in an unshielded environment was investigated. The pattern reversal response showed a major positive component between 90 and 120 msec (P100M) while the response to flash produced a major positive component between 90 and 140 msec (P2M). Latency norms of the P100M were more variable than the corresponding P100 and P2 visual evoked potentials. The latency of the P100M may show a steep increase with age in most subjects after about 55 yr whereas only a small trend of latency with age was detected for the flash P2M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The topography of the visual evoked magnetic response (VEMR) to pattern reversal stimulation was studied in four normal subjects using a single channel BTI magnetometer. VEMRs were recorded from 20 locations over the occipital scalp and the topographic distribution of the most consistent component (P100M) studied. A single dipole in a sphere model was fitted to the data. Topographic maps were similar when recorded two months apart on the same subject to the same stimulus. Half field (HF) stimulation elicited responses from sources on the medial surface of the calcarine fissure mainly in the contralateral hemisphere as predicted by the cruciform model. The full field (FF) responses to large checks were approximately the sum of the HF responses. However, with small checks, FF stimulation appeared to activate a different combination of sources than the two HFs. In addition, HF topography was more consistent between subjects than FF for small check sizes. Topographic studies of the VEMR may help to explain the analogous visual evoked electrical response and will be essential to define optimal recording positions for clinical applications.