2 resultados para Eye Structure

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogels, water swollen polymer matrices, have been utilised in many biomedical applications, as there is the potential to manipulate the properties for a given application by changing the chemical structure of the constituent monomers The eye provides an excellent site to examne the interaction between a synthetic material and a complex biological fluid without invasive surgery. There is a need for the development of new synthetic hydrogels for use in the anterior eye, Three applications of hydrogels in the eye were considered in this thesis. For some patients, the only hope of any visual improvement lies in the use of an artificial cornea, or keratoprosthesis, Preliminary investigations of a series of simple homogeneous hydrogel copolymers revealed that the mechanical properties required to withstand surgery and in eye stresses, were not achieved This lead to work on the development of semi-interpenetrating polymer networks based on the aforementioned copolymers, Manufacture of the device and cell response were also studied. Lasers have been employed in ocular surgery to correct refractive defects. If an irregular surface is ablated, an irregular surface is obtained. A hydrogel system was investigated that could be applied to the eye prior to ablation to create a smooth surface. Factors that may influence ablation rate were explored, Soft contact lenses can be used as a probe to study the interaction between synthetic materials and the biological constituents of tears. This has lead to the development of many sensitive analytical techniques for protein and lipid deposition, one of which is fluorescence spectrophotometry. Various commercially available soft contact lenses were worn for different periods of time and then analysed for protein and lipid deposition using fluorescence spectrophotometry, The influence of water content, degree of ionicity and the lens material on the level and type of deposition was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To analyse the relationship between measured intraocular pressure (IOP) and central corneal thickness (CCT), corneal hysteresis (CH) and corneal resistance factor (CRF) in ocular hypertension (OHT), primary open-angle (POAG) and normal tension glaucoma (NTG) eyes using multiple tonometry devices. Methods: Right eyes of patients diagnosed with OHT (n=47), normal tension glaucoma (n=17) and POAG (n=50) were assessed, IOP was measured in random order with four devices: Goldmann applanation tonometry (GAT); Pascal(R) dynamic contour tonometer (DCT); Reichert(R) ocular response analyser (ORA); and Tono-Pen(R) XL. CCT was then measured using a hand-held ultrasonic pachymeter. CH and CRF were derived from the air pressure to corneal reflectance relationship of the ORA data. Results: Compared to the GAT, the Tonopen and ORA Goldmann equivalent (IOPg) and corneal compensated (IOPcc) measured higher IOP readings (F=19.351, p<0.001), particularly in NTG (F=12.604, p<0.001). DCT was closest to Goldmann IOP and had the lowest variance. CCT was significantly different (F=8.305, p<0.001) between the 3 conditions as was CH (F=6.854, p=0.002) and CRF (F=19.653, p<0.001). IOPcc measures were not affected by CCT. The DCT was generally not affected by corneal biomechanical factors. Conclusion: This study suggests that as the true pressure of the eye cannot be determined non-invasively, measurements from any tonometer should be interpreted with care, particularly when alterations in the corneal tissue are suspected.