13 resultados para Extrapolation.
em Aston University Research Archive
Resumo:
The equation of state for dense fluids has been derived within the framework of the Sutherland and Katz potential models. The equation quantitatively agrees with experimental data on the isothermal compression of water under extrapolation into the high pressure region. It establishes an explicit relationship between the thermodynamic experimental data and the effective parameters of the molecular potential.
Resumo:
Isocyanate cross-linked hydroxy terminated polybutadiene is used as a binder for solid rocket propellant. Rocket motors containing this propellant require a storage life of at least 20 years. During storage it has been found that the important rubbery properties of the binder can be lost due to oxidative cross-linking of the polybutadiene chains. This could cause catastrophic failure when the rocket motor is required. At present the bis-hindered phenol Calco 2246 is used as a thermal oxidative stabiliser, but it's performance is only adequate. This has led to the search for a more efficient stabiliser system. To hasten the evaluation of new antioxidant systems the use of dynamic thermal analysis was investigated. Results showed that a tentative relationship existed between predictions by thermal analysis and the long term oven ageing for simple single antioxidant systems. But for more complex systems containing either autosynergistic or mixed antioxidants no relationship was observed suggesting that results for such an "accelerated" technique cannot be used for the purpose of extrapolation for long term performance. This was attributed to the short time and more aggressive condition used (hjgher temperature and oxygen rich atmosphere in thermal analysis) altering the mechanism of action of the antioxidants and not allowing time for co-operative effect of the combined antioxidant system to form. One potential problem for the binder system is the use of an diisocyanate as a cross-linking agent. This reacts with the hydroxyl hydrogen on the polymer as well as other active hydrogens such as those contained in a number of antioxidants, affecting both cross-linking and antioxidant effectiveness. Studies in this work showed that only antioxidants containing amine moieties have a significant affect on binder preparation, with the phenolic antioxidants not reacting. This is due to the greater nucleophilicity of the amines. Investigation of a range of antioxidant systems, including potentially homo, hetero and autosynergistic systems, has highlighted a number of systems which show considerably greater effectiveness than the currently used antioxidant Calco 2246. The only single antioxidant which showed improvement was the partially unhindered phenol y-Tocopherol. Of the mixed systems combinations of the sulphur containing antioxidants e.g. DLTP with higher levels of chain-breaking antioxidants, especially Calco 2246, were the most promising. Also the homosynergistic mix of an aromatic amine and a phenol was seen to be very effective but the results were inconsistent. This inconsistency could be explained by the method of sample preparation used. It was shown that the efficiency of a number of antioxidant.s could be dramatically improved by the use of ultrasound during the mixing stage of preparation. The reason for this increase in performance is unclear but in the case of the homosynergistic amine/phenol mix both more efficient mixing and/or the production of a novel mechanism of action are suggested
Resumo:
A homologous series of ultra-violet stabilisers containing 2-hydroxybenzophenone (HBP) moiety as a uv absorbing chromophore with varying alkyl chain lengths and sizes were prepared by known chemical synthesis. The strong absorbance of the HBP chromophore was utilized to evaluate the concentration of these stabilisers in low density polyethylene films and concentration of these stabilisers in low density polyethylene films and in relevant solvents by ultra-violet/visible spectroscopy. Intrinsic diffusion coefficients, equilibrium solubilities, volatilities from LDPE films and volatility of pure stabilisers were studied over a temperature range of 5-100oC. The effects of structure, molecular weight and temperature on the above parameters were investigated and the results were analysed on the basis of theoretical models published in the literature. It has been found that an increase in alkyl chain lengths does not change the diffusion coefficients to a significant level, while attachment of polar or branched alkyl groups change their value considerably. An Arrhenius type of relationship for the temperature dependence of diffusion coefficients seems to be valid only for a narrow temperature range, and therefore extrapolation of data from one temperature to another leads to a considerable error. The evidence showed that increase in additive solubility in the polymer is favoured by lower heat of fusions and melting points of additives. This implies the validity of simple regular solution theory to provide an adequate basis for understanding the solubility of additives in polymers The volubility of stabilisers from low density polyethylene films showed that of an additive from a polymer can be expressed in terms of a first-order kinetic equation. In addition the rate of loss of stabilisers was discussed in relation to its diffusion, solubility and volatility and found that all these factors may contribute to the additive loss, although one may be a rate determining factor. Stabiliser migration from LDPE into various solvents and food simulants was studied at temperatures 5, 23, 40 and 70oC; from the plots of rate of migration versus square root time, characteristic diffusion coefficients were obtained by using the solution of Fick's diffusion equations. It was shown that the rate of migration depends primarily on partition coefficients between solvent and the polymer of the additive and also on the swelling action of the contracting media. Characteristic diffusion coefficients were found to approach to intrinsic values in non swelling solvents, whereas in the case of highly swollen polymer samples, the former may be orders of magnitude greater than the latter.
Resumo:
The generation of very short range forecasts of precipitation in the 0-6 h time window is traditionally referred to as nowcasting. Most existing nowcasting systems essentially extrapolate radar observations in some manner, however, very few systems account for the uncertainties involved. Thus deterministic forecast are produced, which have a limited use when decisions must be made, since they have no measure of confidence or spread of the forecast. This paper develops a Bayesian state space modelling framework for quantitative precipitation nowcasting which is probabilistic from conception. The model treats the observations (radar) as noisy realisations of the underlying true precipitation process, recognising that this process can never be completely known, and thus must be represented probabilistically. In the model presented here the dynamics of the precipitation are dominated by advection, so this is a probabilistic extrapolation forecast. The model is designed in such a way as to minimise the computational burden, while maintaining a full, joint representation of the probability density function of the precipitation process. The update and evolution equations avoid the need to sample, thus only one model needs be run as opposed to the more traditional ensemble route. It is shown that the model works well on both simulated and real data, but that further work is required before the model can be used operationally. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The total thermoplastics pipe market in west Europe is estimated at 900,000 metric tonnes for 1977 and is projected to grow to some 1.3 million tonnes of predominantly PVC and polyolefins pipe by 1985. By that time, polyethylene for gas distribution pipe and fittings will represent some 30% of the total polyethylene pipe market. The performance characteristics of a high density polyethylene are significantly influenced by both molecular weight and type of comonomer; the major influences being in the long-term hoop stress resistance and the environmental stress cracking resistance. Minor amounts of hexene-1 are more effective than comonomers lower in the homologous series, although there is some sacrifice of density related properties. A synergistic improvement is obtained by combining molecular weight increase with copolymerisation. The Long-term design strength of polyethylene copolymers can be determined from hoop stress measurement at elevated temperatures and by means of a separation factor of approximate value 22, extrapolation can be made to room temperature performance for a water environment. A polyethylene of black composition has a sufficiently improved performance over yellow pigmented pipe to cast doubts on the validity of internationally specifying yellow coded pipe for gas distribution service. The chemical environment (condensate formation) that can exist in natural gas distribution networks has a deleterious effect on the pipe performance the reduction amounting to at least two decades in log time. Desorption of such condensate is very slow and the influence of the more aggressive aromatic components is to lead to premature stress cracking. For natural gas distribution purposes, the design stress rating should be 39 Kg/cm2 for polyethylenes in the molecular weight range of 150 - 200,000 and 55 Kg/cm2 for higher molecular weight materials.
Resumo:
Mechanical seals are used extensively to seal machinery such as pumps, mixers and agitators in the oil, petrochemical and chemical industries. The performance of such machinery is critically dependent on these devices. Seal failures may result in the escape of dangerous chemicals, possibly causing injury or loss of life. Seal performance is limited by the choice of face materials available. These range from cast iron and stellited stainless steel to cemented and silicon carbides. The main factors that affect seal performance are the wear and corrosion of seal faces. This research investigated the feasibility of applying surface coating/treatments to seal materials, in order to provide improved seal performance. Various surface coating/treatment methods were considered; these included electroless nickel plating, ion plating, plasma nitriding, thermal spraying and high temperature diffusion processes. The best wear resistance, as evaluated by the Pin-on-Disc wear test method, was conferred by the sprayed tungsten carbide/nickel/tungsten-chromium carbide deposit, produced by the high energy plasma spraying (Jet-Kote) process. In general, no correlation was found between hardness and wear resistance or surface finish and friction. This is due primarily to the complexity of the wear and frictional oxidation, plastic deformation, ploughing, fracture and delamination. Corrosion resistance was evaluated by Tafel extrapolation, linear polarisation and anodic potentiodynamic polarisation techniques. The best corrosion performance was exhibited by an electroless nickel/titanium nitride duplex coating due to the passivity of the titanium nitride layer in the acidified salt solution. The surface coating/treatments were ranked using a systematic method, which also considered other properties such as adhesion, internal stress and resistance to thermal cracking. The sealing behaviour of surface coated/treated seals was investigated on an industrial seal testing rig. The best sealing performances were exhibited by the Jet-Kote and electroless nickel silicon carbide composite coated seals. The failure of the electroless nickel and electroless nickel/titanium nitride duplex coated seals was due to inadequate adhesion of the deposits to the substrate. Abrasion of the seal faces was the principal wear mechanism. For operation in an environment similar to the experimental system employed (acidified salt solution) the Jet-Kote deposit appears to be the best compromise.
Resumo:
The susceptibility of tetrahydropterins to oxidation was investigated in vitro and related to in vivo metabolism. At physiological pH, tetrahydrobiopterin (BH4) was oxidized, with considerable loss of the biopterin skeleton, by molecular oxygen. The hydroxyl radical (.OH) was found to increase this oxidation and degradation, whilst physiological concentrations of glutathione (GSH) retarded both the dioxygen and .OH mediated oxidation. Nitrite, at acid pH, oxidized BH4 to biopterin and tetrahydrofolates to products devoid of folate structure. Loss of dietary folates, from the stomach, due to nitrite mediated catabolism is suggested. The in vivo response of BH4 metabolism to oxidising conditions was examined in the rat brain and liver. Acute starvation depressed brain biopterins and transiently BH4 biosynthetic and salvage (dihydropteridine reductase, DHPR) pathways. Loss of biopterins, in starvation, is suggested to arise primarily from catabolism, due to oxygen radical formation and GSH depletion. L-cysteine administration to starving rats was found to elevate tissue biopterins, whilst depletion of GSH in feeding rats, by L-buthionine sulfoximine, decreased biopterins. An in vivo role for GSH to protect tetrahydropterins from oxidation is suggested. The in vivo effect of phenelzine dosing was investigated. Administration lowered brain biopterins, in the presence of dietary tyrosine. This loss is considered to arise from p-tyramine generation and subsequent DHPR inhibition. Observed elevations in plasma biopterins were in line with this mechanism. In conditions other than gross inhibition of DHPR or BH4 biosynthesis, plasma total biopterins were seen to be poor indicators of tissue BH4 metabolism. Evidence is presented indicating that the pterin formed in tissue samples by acid iodine oxidation originates from the tetrahydrofolate pool and 7,8-dihydropterin derived from BH4 oxidation. The observed reduction in this pterin by prior in vivo nitrous oxide exposure and elevation by starvation and phenelzine administration is discussed in this light. The biochemical importance of the changes in tetrahydropterin metabolism observed in this thesis are discussed with extrapolation to the situation in man, where appropriate. An additional role for BH4 as a tissue antioxidant and reductant is also considered.
Resumo:
This research is concerned with the application of operational research techniques in the development of a long- term waste management policy by an English waste disposal authority. The main aspects which have been considered are the estimation of future waste production and the assessment of the effects of proposed systems. Only household and commercial wastes have been dealt with in detail, though suggestions are made for the extension of the effect assessment to cover industrial and other wastes. Similarly, the only effects considered in detail have been costs, but possible extensions are discussed. An important feature of the study is that it was conducted in close collaboration with a waste disposal authority, and so pays more attention to the actual needs of the authority than is usual in such research. A critical examination of previous waste forecasting work leads to the use of simple trend extrapolation methods, with some consideration of seasonal effects. The possibility of relating waste production to other social and economic indicators is discussed. It is concluded that, at present, large uncertainties in predictions are inevitable; waste management systems must therefore be designed to cope with this uncertainty. Linear programming is used to assess the overall costs of proposals. Two alternative linear programming formulations of this problem are used and discussed. The first is a straightforward approach, which has been .implemented as an interactive computer program. The second is more sophisticated and represents the behaviour of incineration plants more realistically. Careful attention is paid to the choice of appropriate data and the interpretation of the results. Recommendations are made on methods for immediate use, on the choice of data to be collected for future plans, and on the most useful lines for further research and development.
Resumo:
The aim of the work presented in this thesis is to produce a direct method to design structures subject to deflection constraints at the working loads. The work carried out can be divided into four main parts. In the first part, a direct design procedure for plane steel frames subjected to sway limitations is proposed. The stiffness equations are modified so that the sway in each storey is equal to some specified values. The modified equations are then solved by iteration to calculate the cross-sectional properties of the columns as well as the other joint displacements. The beam sections are selected initially and then altered in an effort to reduce the total material cost of the frame. A linear extrapolation technique is used to reduce this cost. In this design, stability functions are used so that the effect of axial loads in the members are taken into consideration. The final reduced cost design is checked for strength requirements and the members are altered accordingly. In the second part, the design method is applied to the design of reinforced concrete frames in which the sway in the columns play an active part in the design criteria. The second moment of area of each column is obtained by solving the modified stiffness equations and then used to calculate the mlnlmum column depth required. Again the frame has to be checked for all the ultimate limit state load cases. In the third part, the method is generalised to design pin-jointed space frames for deflection limitatlions. In these the member areas are calculated so that the deflection at a specified joint is equal to its specified value. In the final part, the Lagrange multiplier technique is employed to obtain an optimum design for plane rigidly jointed steel frames. The iteration technique is used here to solve the modified stiffness equations as well as derivative equations obtained in accordance to the requirements of the optimisation method.
Resumo:
This thesis describes the geology, geochemistry and mineralogy of a Lower Proterozoic, metamorphosed volcanogenic Cu-Zn deposit, situated at the western end of the Flin Flon greenstone belt. Stratabound copper mineralisation occurs in silicified and chloritoid-bearing alteration assemblages within felsic tuffs and is mantled by thin (< 3m) high-grade sphalerite layers. Mineralisation is underlain by garnet-hornblende bearing Lower Iron Formation (LIF), and overlain by garnet-grunerite bearing Upper Iron Formation (UIF). Distinctive trace element trends, involving Ti and Zr, in mineralised and footwall felsic tuffs are interpreted to have formed by fractionation associated with a high-level magma chamber in a caldera-type environment. Discrimination diagrams for basaltic rocks are interpreted to indicate their formation in an environment similar to that of recent, primitive, tholeiitic island arcs. Microprobe studies of key mineral phases demonstrate large and small scale chemical variations in silicate phases related to primary lithological, rather than metamorphic, controls. LIF is characterised by alumino-ferro-tschermakite and relatively Mn-poor, Ca-rich garnets, whereas UIF contains manganoan grunerite and Mn-rich garnets. Metamorphic mineral reactions are considered and possible precursor assemblages identified for garnet-, and chloritoid-bearing rocks. Chloritoid-bearing rocks are interpreted as the metamorphosed equivalents of iron-rich feeder zones formed near the surface. The iron-formations are thought to represent iron-rich sediments formed on the sea floor formed from the venting of the ore fluids. Consideration of various mineral assemblages leads to an estimate for peak metamorphic conditions of 450-500oC and > 4Kb total pressure. Comparisons with other volcanogenic deposits indicate affinities with deposits of `Mattabi-type' from the Archean of Ontario. An extrapolation of the main conclusions of the thesis to adjacent areas points to the presence of a number of geologically similar localities with potential for mineralisation.
Resumo:
Purpose: Recent studies indicate that ocular and scleral rigidity is pertinent to our understanding of glaucoma, age related macular degeneration and the development and pathogenesis of myopia. The principal method of measuring ocular rigidity is by extrapolation of data from corneal indentation tonometry (Ko) using Friedenwald’s transformation algorithms. Using scleral indentation (Schiotz tonometry) we assess whether regional variations in resistance to indentation occur in vivo across the human anterior globe directly, with reference to the deflection of Schiotz scale readings. Methods: Data were collected from both eyes of 26 normal young adult subjects with a range of refractive error (mean spherical equivalent ± S.D. of -1.77 D ± 3.28 D, range -10.56 to +4.38 D). Schiotz tonometry (5.5 g & 7.5 g) was performed on the cornea and four scleral quadrants; supero-temporal (ST) and -nasal (SN), infero-temporal (IT) and -nasal (IN) approximately 8 mm posterior to the limbus. Results: Values of Ko (mm3)-1 were consistent with those previously reported (mean 0.0101 ± 0.0082, range 0.0019–0.0304). In regards to the sclera, significant differences (p < 0.001) were found across quadrants with indentation readings for both loads between means for the cornea and ST; ST and SN; ST and IT, ST and IN. Mean (±S.D.) scale readings for 5.5 g were: cornea 5.93 ± 1.14, ST 8.05 ± 1.58, IT 7.03 ± 1.86, SN 6.25 ± 1.10, IN 6.02 ± 1.49; and 7.5 g: cornea 9.26 ± 1.27, ST 11.56 ± 1.65, IT 10.31 ± 1.74, SN 9.91 ± 1.20, IN 9.50 ± 1.56. Conclusions: Significant regional variation was found in the resistance of the anterior sclera to indentation produced by the Schiotz tonometer.
Resumo:
We report results of an experimental study, complemented by detailed statistical analysis of the experimental data, on the development of a more effective control method of drug delivery using a pH sensitive acrylic polymer. New copolymers based on acrylic acid and fatty acid are constructed from dodecyl castor oil and a tercopolymer based on methyl methacrylate, acrylic acid and acryl amide were prepared using this new approach. Water swelling characteristics of fatty acid, acrylic acid copolymer and tercopolymer respectively in acid and alkali solutions have been studied by a step-change method. The antibiotic drug cephalosporin and paracetamol have also been incorporated into the polymer blend through dissolution with the release of the antibiotic drug being evaluated in bacterial stain media and buffer solution. Our results show that the rate of release of paracetamol getss affected by the pH factor and also by the nature of polymer blend. Our experimental data have later been statistically analyzed to quantify the precise nature of polymer decay rates on the pH density of the relevant polymer solvents. The time evolution of the polymer decay rates indicate a marked transition from a linear to a strictly non-linear regime depending on the whether the chosen sample is a general copolymer (linear) or a tercopolymer (non-linear). Non-linear data extrapolation techniques have been used to make probabilistic predictions about the variation in weight percentages of retained polymers at all future times, thereby quantifying the degree of efficacy of the new method of drug delivery.
Resumo:
Grewia polysaccharide gum, a potential pharmaceutical excipient was extracted from the inner stem bark of Grewia mollis, thereupon drying was achieved by three techniques: air-drying, freeze-drying and spray-drying. Analysis of the monosaccharide composition including 1H and 13C NMR spectroscopic analysis of the polysaccharide gum was carried out. The effect of the drying methods on the physicochemical properties of the gum was evaluated by Fourier transformed infra-red (FT-IR) spectroscopy, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, differential scanning calorimetry and gel permeation chromatography. Monosaccharide sugar analysis revealed that the gum is composed of glucose, rhamnose, galactose, arabinose and xylose as the main neutral sugars. These were supported by the results from 1H and 13C NMR spectroscopic analysis. FT-IR and solid-state NMR results indicated that drying technique has little effect on the structure of the polysaccharide gum but XPS showed that surface chemistry of the gum varied with drying methods. Thermogravimetric analyses showed that oxidation onset varied according to the drying method. The molecular weight was also dependent on the drying technique. For industrial extrapolation, air-drying may be preferable to spray-drying and freeze-drying when relative cost, product stability and powder flow are required, for example in tablet formulation. © 2010 Elsevier Ltd. All rights reserved.