4 resultados para Extracting information

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about km800, carrying a C-band scatterometer. A scatterometer measures the amount of radar back scatter generated by small ripples on the ocean surface induced by instantaneous local winds. Operational methods that extract wind vectors from satellite scatterometer data are based on the local inversion of a forward model, mapping scatterometer observations to wind vectors, by the minimisation of a cost function in the scatterometer measurement space.par This report uses mixture density networks, a principled method for modelling conditional probability density functions, to model the joint probability distribution of the wind vectors given the satellite scatterometer measurements in a single cell (the `inverse' problem). The complexity of the mapping and the structure of the conditional probability density function are investigated by varying the number of units in the hidden layer of the multi-layer perceptron and the number of kernels in the Gaussian mixture model of the mixture density network respectively. The optimal model for networks trained per trace has twenty hidden units and four kernels. Further investigation shows that models trained with incidence angle as an input have results comparable to those models trained by trace. A hybrid mixture density network that incorporates geophysical knowledge of the problem confirms other results that the conditional probability distribution is dominantly bimodal.par The wind retrieval results improve on previous work at Aston, but do not match other neural network techniques that use spatial information in the inputs, which is to be expected given the ambiguity of the inverse problem. Current work uses the local inverse model for autonomous ambiguity removal in a principled Bayesian framework. Future directions in which these models may be improved are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in text mining for biomedicine is automatically extracting protein-protein interactions from the vast amount of biomedical literature. We have constructed an information extraction system based on the Hidden Vector State (HVS) model for protein-protein interactions. The HVS model can be trained using only lightly annotated data whilst simultaneously retaining sufficient ability to capture the hierarchical structure. When applied in extracting protein-protein interactions, we found that it performed better than other established statistical methods and achieved 61.5% in F-score with balanced recall and precision values. Moreover, the statistical nature of the pure data-driven HVS model makes it intrinsically robust and it can be easily adapted to other domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last decade, biomedicine has witnessed a tremendous development. Large amounts of experimental and computational biomedical data have been generated along with new discoveries, which are accompanied by an exponential increase in the number of biomedical publications describing these discoveries. In the meantime, there has been a great interest with scientific communities in text mining tools to find knowledge such as protein-protein interactions, which is most relevant and useful for specific analysis tasks. This paper provides a outline of the various information extraction methods in biomedical domain, especially for discovery of protein-protein interactions. It surveys methodologies involved in plain texts analyzing and processing, categorizes current work in biomedical information extraction, and provides examples of these methods. Challenges in the field are also presented and possible solutions are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Joint sentiment-topic (JST) model was previously proposed to detect sentiment and topic simultaneously from text. The only supervision required by JST model learning is domain-independent polarity word priors. In this paper, we modify the JST model by incorporating word polarity priors through modifying the topic-word Dirichlet priors. We study the polarity-bearing topics extracted by JST and show that by augmenting the original feature space with polarity-bearing topics, the in-domain supervised classifiers learned from augmented feature representation achieve the state-of-the-art performance of 95% on the movie review data and an average of 90% on the multi-domain sentiment dataset. Furthermore, using feature augmentation and selection according to the information gain criteria for cross-domain sentiment classification, our proposed approach performs either better or comparably compared to previous approaches. Nevertheless, our approach is much simpler and does not require difficult parameter tuning.