60 resultados para Experimental demonstration activity
em Aston University Research Archive
Resumo:
We have experimentally investigated two non-inverting optical memory configurations: a TOAD based device & an integrated hybrid Mach-Zehnder interferometer. Experimental results for both devices and a comparison of the two techniques is presented.
Resumo:
We present the first experimental demonstration of a resolvable mode structure with spacing c/2nL in the RF spectra of ultralong Raman fiber lasers. The longest ever demonstrated laser cavity (L=84km), RF peaks of ∼100 Hz width and spacing ∼1 kHz have been observed at low intracavity powers. The width of the peaks increases linearly with growing intracavity power and is almost independent of fiber length. © 2007 Optical Society of America.
Resumo:
We demonstrate a novel phase noise estimation scheme for CO-OFDM, in which pilot subcarriers are deliberately correlated to the data subcarriers. This technique reduces the overhead by a factor of 2. © OSA 2014.
Resumo:
We report the first experimental demonstration of single transmissive fiber Bragg grating implementation of a first-order optical differentiation. The device has been designed and fabricated, and the experimental results show a good performance over an operational bandwidth of ∼2 nm. © 2013 Optical Society of America.
Resumo:
We demonstrate the first experimental implementation of intensity-modulation and direct-detection 7.6Gb/s DBPSK-based DSB optical Fast-OFDM with a reduced subcarrier spacing equal to half of the symbol rate per subcarrier over 40km SMF. © 2012 OSA.
Resumo:
We present the first experimental implementation of an all-optical ROADM scheme for routing of individual channels within an all-optical OFDM superchannel. The interferometric technique demonstrated enables a fully flexible node, implementing the extraction, drop and addition of individual sub-channel.
Resumo:
The focusing of multimode laser diode beams is probably the most significant problem that hinders the expansion of the high-power semiconductor lasers in many spatially-demanding applications. Generally, the 'quality' of laser beams is characterized by so-called 'beam propagation parameter' M2, which is defined as the ratio of the divergence of the laser beam to that of a diffraction-limited counterpart. Therefore, M2 determines the ratio of the beam focal-spot size to that of the 'ideal' Gaussian beam focused by the same optical system. Typically, M2 takes the value of 20-50 for high-power broad-stripe laser diodes thus making the focal-spot 1-2 orders of magnitude larger than the diffraction limit. The idea of 'superfocusing' for high-M2 beams relies on a technique developed for the generation of Bessel beams from laser diodes using a cone-shaped lens (axicon). With traditional focusing of multimode radiation, different curvatures of the wavefronts of the various constituent modes lead to a shift of their focal points along the optical axis that in turn implies larger focal-spot sizes with correspondingly increased values of M2. In contrast, the generation of a Bessel-type beam with an axicon relies on 'self-interference' of each mode thus eliminating the underlying reason for an increase in the focal-spot size. For an experimental demonstration of the proposed technique, we used a fiber-coupled laser diode with M2 below 20 and an emission wavelength in ~1μm range. Utilization of the axicons with apex angle of 140deg, made by direct laser writing on a fiber tip, enabled the demonstration of an order of magnitude decrease of the focal-spot size compared to that achievable using an 'ideal' lens of unity numerical aperture. © 2014 SPIE.
Resumo:
The experimental implementation of an all-optical node able of routing a channel contained in an all-optical OFDM super-channel is presented. The extract function is performed through channel selection, reshaping and interferometric suppression.
Resumo:
We demonstrate for the first time, the transmission performance of 10Gbaud nonlinear inverse synthesis based signal over transoceanic distances, showing a significant improvement in data capacity x distance product (x12) compared with other NFT-based systems.
Resumo:
We present the first experimental demonstration of a Raman fibre laser operation with a resolvable ~0.6 kHz mode spacing operating at 1551nm. Our laser has a record cavity length of 165 km.
Resumo:
We have studied the dynamics and stability of solitonic pulses (including soliton interaction) across URFL transmission links, as well as the dependence of these dynamics on cavity design (length, symmetry, reflectivity) and input pulse characteristics. The first experimental demonstration of long-distance ldquotruerdquo soliton propagation through optical fibre. The results conclude that even relatively long links of the order of 50 km show excellent nonlinear resilience and are capable of providing virtually transparent transmission under a broad range of input pulse characteristics.
Resumo:
We present the first experimental demonstration of true (not loss managed) soliton pulse transmission in conventional optical fibre. Experimental FROG spectrograms and numerical simulations confirm the soliton pulse evolution dynamics.
Resumo:
We present experimental demonstration of a 200-km-long, dual-wavelength Raman laser utilizing two slightly different-wavelength fiber Bragg gratings, one on each side of the fiber span. The obtained results clearly prove the generation of two independent Raman lasers with a distributed “random” Rayleigh scattering mirror forming a cavity together with each of the individual fiber Bragg grating reflectors.
Resumo:
We describe how an acousto-optic tunable filter can be used to both demultiplex the signals from multiple fibre Bragg grating sensors and simultaneously provide wide bandwidth signal demodulation in a system using interferometric wavelength shift detection. In an experimental demonstration, the approach provided a noise limited strain resolution of 24.9 n epsilon Hz(-1/ 2) at 15 Hz.
Resumo:
We describe an experimental demonstration of a novel technique for liquid refractometry. A channeled spectrum is produced from an optical beam generated by a diode laser operating below threshold by intercepting half of the beam with a liquid cell. The spectrum is analyzed using a grating and a linear CCD array and provides information on the refractive index of the liquid. The experimental results show that accuracies of better than 0.3% in the index may be obtained with the present method.