5 resultados para Experimentación formal
em Aston University Research Archive
Resumo:
Purpose – This paper aims to evaluate critically the conventional binary hierarchical representation of the formal/informal economy dualism which reads informal employment as a residual and marginal sphere that has largely negative consequences for economic development and needs to be deterred. Design/methodology/approach – To contest this depiction, the results of 600 household interviews conducted in Ukraine during 2005/2006 on the extent and nature of their informal employment are reported. Findings – Informal employment is revealed to be an extensively used form of work and, through a richer and more textured understanding of the multiple roles that different forms of informal employment play, a form of work that positively contributes to economic and social development, acting both as an important seedbed for enterprise creation and development and as a primary vehicle through which community self-help is delivered in contemporary Ukraine. Research limitations/implications – This survey reveals that depicting informal employment as a hindrance to development and deterring engagement in this sphere results in state authorities destroying the entrepreneurial endeavour and active citizenship that other public policies are seeking to nurture. The paper concludes by addressing how this public policy paradox might start to be resolved. Originality/value – This paper is one of the first to document the role of informal employment in nurturing enterprise creation and development as well as community exchange.
Resumo:
Hard real-time systems are a class of computer control systems that must react to demands of their environment by providing `correct' and timely responses. Since these systems are increasingly being used in systems with safety implications, it is crucial that they are designed and developed to operate in a correct manner. This thesis is concerned with developing formal techniques that allow the specification, verification and design of hard real-time systems. Formal techniques for hard real-time systems must be capable of capturing the system's functional and performance requirements, and previous work has proposed a number of techniques which range from the mathematically intensive to those with some mathematical content. This thesis develops formal techniques that contain both an informal and a formal component because it is considered that the informality provides ease of understanding and the formality allows precise specification and verification. Specifically, the combination of Petri nets and temporal logic is considered for the specification and verification of hard real-time systems. Approaches that combine Petri nets and temporal logic by allowing a consistent translation between each formalism are examined. Previously, such techniques have been applied to the formal analysis of concurrent systems. This thesis adapts these techniques for use in the modelling, design and formal analysis of hard real-time systems. The techniques are applied to the problem of specifying a controller for a high-speed manufacturing system. It is shown that they can be used to prove liveness and safety properties, including qualitative aspects of system performance. The problem of verifying quantitative real-time properties is addressed by developing a further technique which combines the formalisms of timed Petri nets and real-time temporal logic. A unifying feature of these techniques is the common temporal description of the Petri net. A common problem with Petri net based techniques is the complexity problems associated with generating the reachability graph. This thesis addresses this problem by using concurrency sets to generate a partial reachability graph pertaining to a particular state. These sets also allows each state to be checked for the presence of inconsistencies and hazards. The problem of designing a controller for the high-speed manufacturing system is also considered. The approach adopted mvolves the use of a model-based controller: This type of controller uses the Petri net models developed, thus preservIng the properties already proven of the controller. It. also contains a model of the physical system which is synchronised to the real application to provide timely responses. The various way of forming the synchronization between these processes is considered and the resulting nets are analysed using concurrency sets.
Resumo:
A major application of computers has been to control physical processes in which the computer is embedded within some large physical process and is required to control concurrent physical processes. The main difficulty with these systems is their event-driven characteristics, which complicate their modelling and analysis. Although a number of researchers in the process system community have approached the problems of modelling and analysis of such systems, there is still a lack of standardised software development formalisms for the system (controller) development, particular at early stage of the system design cycle. This research forms part of a larger research programme which is concerned with the development of real-time process-control systems in which software is used to control concurrent physical processes. The general objective of the research in this thesis is to investigate the use of formal techniques in the analysis of such systems at their early stages of development, with a particular bias towards an application to high speed machinery. Specifically, the research aims to generate a standardised software development formalism for real-time process-control systems, particularly for software controller synthesis. In this research, a graphical modelling formalism called Sequential Function Chart (SFC), a variant of Grafcet, is examined. SFC, which is defined in the international standard IEC1131 as a graphical description language, has been used widely in industry and has achieved an acceptable level of maturity and acceptance. A comparative study between SFC and Petri nets is presented in this thesis. To overcome identified inaccuracies in the SFC, a formal definition of the firing rules for SFC is given. To provide a framework in which SFC models can be analysed formally, an extended time-related Petri net model for SFC is proposed and the transformation method is defined. The SFC notation lacks a systematic way of synthesising system models from the real world systems. Thus a standardised approach to the development of real-time process control systems is required such that the system (software) functional requirements can be identified, captured, analysed. A rule-based approach and a method called system behaviour driven method (SBDM) are proposed as a development formalism for real-time process-control systems.
Resumo:
There is an increasing emphasis on the use of software to control safety critical plants for a wide area of applications. The importance of ensuring the correct operation of such potentially hazardous systems points to an emphasis on the verification of the system relative to a suitably secure specification. However, the process of verification is often made more complex by the concurrency and real-time considerations which are inherent in many applications. A response to this is the use of formal methods for the specification and verification of safety critical control systems. These provide a mathematical representation of a system which permits reasoning about its properties. This thesis investigates the use of the formal method Communicating Sequential Processes (CSP) for the verification of a safety critical control application. CSP is a discrete event based process algebra which has a compositional axiomatic semantics that supports verification by formal proof. The application is an industrial case study which concerns the concurrent control of a real-time high speed mechanism. It is seen from the case study that the axiomatic verification method employed is complex. It requires the user to have a relatively comprehensive understanding of the nature of the proof system and the application. By making a series of observations the thesis notes that CSP possesses the scope to support a more procedural approach to verification in the form of testing. This thesis investigates the technique of testing and proposes the method of Ideal Test Sets. By exploiting the underlying structure of the CSP semantic model it is shown that for certain processes and specifications the obligation of verification can be reduced to that of testing the specification over a finite subset of the behaviours of the process.