16 resultados para Exons (Genetics)
em Aston University Research Archive
Resumo:
Multi-agent algorithms inspired by the division of labour in social insects are applied to a problem of distributed mail retrieval in which agents must visit mail producing cities and choose between mail types under certain constraints.The efficiency (i.e. the average amount of mail retrieved per time step), and the flexibility (i.e. the capability of the agents to react to changes in the environment) are investigated both in static and dynamic environments. New rules for mail selection and specialisation are introduced and are shown to exhibit improved efficiency and flexibility compared to existing ones. We employ a genetic algorithm which allows the various rules to evolve and compete. Apart from obtaining optimised parameters for the various rules for any environment, we also observe extinction and speciation. From a more theoretical point of view, in order to avoid finite size effects, most results are obtained for large population sizes. However, we do analyse the influence of population size on the performance. Furthermore, we critically analyse the causes of efficiency loss, derive the exact dynamics of the model in the large system limit under certain conditions, derive theoretical upper bounds for the efficiency, and compare these with the experimental results.
Resumo:
Wardop first described retinoblastoma in 1809. It is the most common intraocular tumour of childhood and the most common tumour of the retina. It was originally thought to be a glioma arising from glial cells of the retina. However, in 1926 it was recognised as a tumour of undifferentiated photoreceptor cells. This article describes the basic clinical and pathological aspects of retinoblastoma, the advances in molecular genetics which have led to the discovery of the gene responsible, and the defects which have been discovered in the retinoblastoma gene.
Resumo:
This article describes the recent advances that have been made in understanding the molecular genetics of retinitis pigmentosa (RP). The basic clinical and pathological aspects of RP will be described, together with the patterns of inheritance exhibited by the disorder. In addition, the most important genes that have been linked to RP will be discussed as well as the advances in molecular genetics which have led to the identification of mutations in these genes.
Resumo:
This article reviews: 1) the clinical and pathological features of the different types of catarct, 2) the patterns of inheritance of cataract, 3) the genes that may be associated with the development of cataract, and 4) how the presence of abnormal genes may cause lens opacity.
Resumo:
The present article reviews the patterns of inheritance associated with glaucoma, how the genes linked to the disease have been located and identified, and considers how the effect of some of these genes could lead to glaucoma.
Resumo:
This article considers the clinical symptoms associated with hereditary optic atrophy and reviews recent progress in our understanding the genetics of the disorder. The major genes linked to optic atrophy are identified and how defects in these genes could lead to the optic disc pathology is discussed.
Resumo:
One of the objectives of the molecular biological study of glaucoma is to establish how the disease develops as a result of the production of aberrant gene products. Many of the genes associated with glaucoma code for proteins which are likely to be directly or indirectly involved in the development and/or function of cells within the trabecular meshwork. The identification of specific defects in these genes is likely to lead to a better understanding of the mechanisms involved in PCG and glaucoma in general and to the development of alternative therapies to surgery. The CYP1B1 gene in particular, which is a linked to congenital glaucoma, and is expressed in the trabecular meshwork, codes for a member of the cytochrome P450 group of proteins. These iron binding proteins constitute a family of enzymes involved in the processes of xenobiotic metabolism, growth, and development. The discovery of the CYP1B1 gene in PCG emphases the importance of abnormalities in the molecular structure of proteins expressed in cells of the trabecular network as a cause of PCG. The identification of specific genetic defects leads to the possibility of more widespread screening for PCG especially in affected families and hence, the possibility of the identification of asymptomatic carriers of the disease. Early identification of 'at risk' parents may then enable earlier detection of PCG and intervention in the infant.
Resumo:
This series of articles describes the basic elements of genetics necessary to understand the new advances and the impact these advances will have on the study and treatment of ocular disease. The first article describes the patterns of inheritance of human characteristics, how they are transmitted between the generations and the structure of chromosomes.
Resumo:
This article on the basic concepts of genetics concentrates on doeoxyribose nucleic acid (DNA), the chemical constituent of the genes. First, it will cover how DNA was discovered to be the substance of the genes. Second, the structure of DNA is revealed together with how DNA molecules can make copies of themselves. Third, the nature of the genetic code contained in DNA and how this code directs the manufacture of proteins is described. Finally, the effects of mutation of the genes and how the activities of genes are regulated will be discussed together with the relevance of these concepts to ocular disease.
Resumo:
The objective of this article is to describe the patterns of inheritance exhibited in the human populations and to illustrate them with examples drawn from a variety of ocular diseases.
Resumo:
The objective of the final artcile in this series is to describe how recent developments in genetics are likely to imact the diagnosis, scientific understanding, and future treatment of ocular disease.
Resumo:
This article reviews the patterns of inheritance associated with glaucoma, how the genes linked to glaucoma have been located and identified and considers how the effect of some of these genes could lead to glaucoma.