4 resultados para Exo-biopolymer

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research described herein relates to studies into the Aqueous Ring-Opening Metathesis Polymerisation (ROMP) of bicyclic monomers using ruthenium complex catalysts. Two monomers were synthesised for the purpose of these studies, namely exo, exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid (7-oxanorbornenedicarboxylic acid) and exo, exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid (norbornene dicarboxylic acid). A number of ruthenium complexes were synthesised, amongst them a novel complex containing the water soluble phosphine ligand trist(hydroxymethyl)phosphine P(CH2OH)3. Its synthesis and characterisation are described and its physical properties compared and contrasted to analogous compounds of platinum and palladium. Its peculiar properties are ascribed to a trans-placement of the phosphine ligands. Dilatometry was investigated as a technique for the acquisition of kinetic data from aqueous metathesis reactions. For the attempted polymerisation of 7-oxanorbonenedicarboxylic acid the results are explained in terms of a reverse Diels-Alder reaction of the monomer. The reaction between Ru(CO)Cl2(H2O) and 7-oxanorbonenedicarboxylic acid was monitored using UV/Vis spectrometry and kinetic data retrieved. The data are explained in terms of a two stage reaction consisting of consecutive first order processes.The reaction between 7-oxanorbornenedicarboxylic acid and Ru(CO)Cl2(H2O) or Ru(P(CH2OH)3)3Cl2 was found to produce fumaric acid as one of the major products. This reaction is previously unreported in the literature and a mechanism is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The work reported in this thesis was carried out to contribute to the knowledge of the effects of substrate water availability or water activity (a ) on fungal growth parameters and its implications in the preparationw of materials susceptible to biodeterioration. Fungi were isolated from soils of different ecological sites at a range of substrate aw levels controlled by sodium chloride (NaCl). Three groups of fungi were isolated : firstly, those isolated only at high a (aw about 0.997).secondly, those isolated at high and decreasing aw (aw 0.997 to 0.85) and finally, those isolated at only decreased aw (aw O.95 to 0.80). From these isolations, test fungi were selected to study the effects of pH, temperature, exo-enzyme production and biocide efficacy at decreased aw levels, with glycerol and NaCl as a controlling solutes. The linear extension rates of the fungi increased at all test pH values near optimum a of growth. Test fungi of the Aspergillus glaucus group were found to be most resistant to low aw. Growth and survival of vegetative and fruiting bodies at elevated temperatures were enhanced with the addition of a controlling solutes. A. flavus, A. fumigatus displayed high heat resistance and A. amstelodami, A. versicolor and Penicillium citrinum displayed low heat resistance at high aw levels and vice versa at low aw levels. Amylase, lipase and protease activities were studied at lowered aw , using modifications of the test tube method of Raute11a and Cowling. Amylase and protease production in most xerophilic fungi ceased around 0.80 aw , but lipase production in some xerophilic fungi, including A. glatlcus fungi, was up to and including 0.70 aw with g1ycero1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new family of multifunctional scaffolds, incorporating selected biopolymer coatings on basic Bioglass® derived foams has been developed. The polymer coatings were investigated as carrier of vancomycin which is a suitable drug to impart antibiotic function to the scaffolds. It has been proved that coating with PLGA (poly(lactic-co-glycolic acid)) with dispersed vancomycin-loaded microgels provides a rapid delivery of drug to give antibacterial effects at the wound site and a further sustained release to aid mid to long-term healing. Furthermore, the microgels also improved the bioactivity of the scaffolds by acting as nucleation sites for the formation of HA crystals in simulated body fluid. © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The "living" and/or controlled cationic ring-opening bulk copolymerization of oxetane (Ox) with tetrahydropyran (THP) (cyclic ether with no homopolymerizability) at 35°C was examined using ethoxymethyl-1 -oxoniacyclohexane hexafluoroantimonate (EMOA) and (BF3 · CH3OH)THP as fast and slow initiator, respectively, yielding living and nonliving polymers with pseudoperiodic sequences (i.e., each pentamethylene oxide fragment inserted into the polymer is flanked by two trimethylene oxide fragments). Good control over number-average molecular weight (Mn up to 150000 g mol-1) with molecular weight distribution (MWD ∼ 1.4-1, 5) broader than predicted by the Poison distribution (MWDs > 1 +1/DPn) was attained using EMOA as initiating system, i.e., C 2H5OCH2Cl with 1.1 equiv of AgSbF6 as a stable catalyst and 1.1 equiv of 2,6-di-tert-butylpyridine used as a non-nucleophilic proton trap. With (BF3 · CH 3OH)THP, a drift of the linear dependence M n(GPC) vs Mn(theory) to lower molecular weight was observed together with the production of cyclic oligomers, ∼3-5% of the Ox consumed in THP against ∼30% in dichloromethane. Structural and kinetics studies highlighted a mechanism of chains growth where the rate of mutual conversion between "strain ACE species" (chain terminated by a tertiary 1-oxoniacyclobutane ion, Al) and "strain-free ACE species" (chain terminated by a tertiary 1-oxoniacyclohexane ion, Tl) depends on the rate at which Ox converts the stable species T1 (kind of "dormant" species) into a living "propagating" center A1 (i.e., k aapp[Ox]). The role of the THP solvent associated with the suspension of irreversible and reversible transfer reactions to polymer, when the polymerization is initiated with EMOA, was predicted by our kinetic considerations. The activation -deactivation pseudoequilibrium coefficient (Qt) was then calculated in a pure theoretical basis. From the measured apparent rate constant of Ox (kOxapp) and THP (kTHPapp = ka(endo)app) consumption, Qt and reactivity ratio (kp/kd, k a(endo)/ka(exo), and ks/ka(endo) were calculated, which then allow the determination of the transition rate constant of elementary step reactions that governs the increase of Mu with conversion. © 2009 American Chemical Society.