10 resultados para Exchanger Isoform Nhe3

em Aston University Research Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a Laser Doppler Anemometer technique to measure the velocity distribution in a commercial plate heat exchanger is described. Detailed velocity profiles are presented and a preliminary investigation is reported on flow behaviour through a single cell in the channel matrix. The objective of the study was to extend previous investigations of plate heat exchanger flow patterns in the laminar range with the eventual aim of establishing the effect of flow patterns on heat transfer performance, thus leading to improved plate heat exchanger design and design methods. Accurate point velocities were obtained by Laser Anemometry in a perspex replica of the metal channel. Oil was used as a circulating liquid with a refractive index matched to that of the perspex so that the laser beams were not distorted. Cell-by-cell velocity measurements over a range of Reynolds number up to ten showed significant liquid mal-distribution. Local cell velocities were found to be as high as twenty seven times average velocity, contrary to the previously held belief of four times. The degree of mal-distribution varied across the channel as well as in the vertical direction, and depended on the upward or downward direction of flow. At Reynolds numbers less than one, flow zig-zagged from one side of the channel to the other in wave form, but increases in Reynolds number improved liquid distribution. A detailed examination of selected cells showed velocity variations in different directions, together with variation within individual cells. Experimental results are also reported on the flow split when passing through a single cell in a section of a channel . These observations were used to explain mal-distribution in the perspex channel itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental investigations and computer modelling studies have been made on the refrigerant-water counterflow condenser section of a small air to water heat pump. The main object of the investigation was a comparative study between the computer modelling predictions and the experimental observations for a range of operating conditions but other characteristics of a counterflow heat exchanger are also discussed. The counterflow condenser consisted of 15 metres of a thermally coupled pair of copper pipes, one containing the R12 working fluid and the other water flowing in the opposite direction. This condenser was mounted horizontally and folded into 0.5 metre straight sections. Thermocouples were inserted in both pipes at one metre intervals and transducers for pressure and flow measurement were also included. Data acquisition, storage and analysis was carried out by a micro-computer suitably interfaced with the transducers and thermocouples. Many sets of readings were taken under a variety of conditions, with air temperature ranging from 18 to 26 degrees Celsius, water inlet from 13.5 to 21.7 degrees, R12 inlet temperature from 61.2 to 81.7 degrees and water mass flow rate from 6.7 to 32.9 grammes per second. A Fortran computer model of the condenser (originally prepared by Carrington[1]) has been modified to match the information available from experimental work. This program uses iterative segmental integration over the desuperheating, mixed phase and subcooled regions for the R12 working fluid, the water always being in the liquid phase. Methods of estimating the inlet and exit fluid conditions from the available experimental data have been developed for application to the model. Temperature profiles and other parameters have been predicted and compared with experimental values for the condenser for a range of evaporator conditions and have shown that the model gives a satisfactory prediction of the physical behaviour of a simple counterflow heat exchanger in both single phase and two phase regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes a detailed investigation of the hydrodynamic characteristics of a commercially-available three-dimensional plate heat exchanger.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local shell side coefficient measurements in the end conpartments of a model shell and tube heat exchanger have been made using an electrochemical technique. Limited data are also reported far the second compartment. The end compartment average coefficients have been found to be smaller than reported data for a corresponding internal conpartment. The second compartment data. have been shown to lie between those for the end compartments and the reported internal compartment data. Experimental data are reported fcr two port types and two baffle orientations. with data for the case of an inlet compartment impingement baffle also being given . Port type is shown to have a small effect on compartment coefficients, these being largely unaffected. Likewise, the outlet compartment average coefficients are slightly snaller than those for the inlet compartment, with the distribution of individual tube coefficients being similar. Baffle orientation has been shown to have no effect on average coefficients, but the distribution of the data is substantially affected. The use of an impingement baffle in the inlet compartment lessens the efect of baffle orientation on distribution . Recommendations are made for future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approach and Results - Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. Objective - Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/ nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. Conclusions - Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colon and pancreatic cancers contribute to 90,000 deaths each year in the USA. These cancers lack targeted therapeutics due to heterogeneity of the disease and multiple causative factors. One important factor that contributes to increased colon and pancreatic cancer risk is gastrin. Gastrin mediates its actions through two G-protein coupled receptors (GPCRs): cholecystokinin receptor A (CCK-A) and CCK-B/gastrin receptor. Previous studies have indicated that colon cancer predominantly expresses CCK-A and responds to CCK-A isoform antagonists. However, many CCK-A antagonists have failed in the clinic due to poor pharmacokinetic properties or lack of efficacy. In the present study, we synthesized a library of CCK-A isoform-selective antagonists and tested them in various colon and pancreatic cancer preclinical models. The lead CCK-A isoform, selective antagonist PNB-028, bound to CCK-A at 12 nM with a 60-fold selectivity towards CCK-A over CCK-B. Furthermore, it inhibited the proliferation of CCK-A-expressing colon and pancreatic cancer cells without affecting the proliferation of non-cancerous cells. PNB-028 was also extremely effective in inhibiting the growth of MAC-16 and LoVo colon cancer and MIA PaCa pancreatic cancer xenografts in immune-compromised mice. Genomewide microarray and kinase-array studies indicate that PNB-028 inhibited oncogenic kinases and angiogenic factors to inhibit the growth of colon cancer xenografts. Safety pharmacology and toxicology studies have indicated that PNB-028 is extremely safe and has a wide safety margin. These studies suggest that targeting CCK-A selectively renders promise to treat colon and pancreatic cancers and that PNB-028 could become the next-generation treatment option.