12 resultados para Exact constraint
em Aston University Research Archive
Resumo:
The Vapnik-Chervonenkis (VC) dimension is a combinatorial measure of a certain class of machine learning problems, which may be used to obtain upper and lower bounds on the number of training examples needed to learn to prescribed levels of accuracy. Most of the known bounds apply to the Probably Approximately Correct (PAC) framework, which is the framework within which we work in this paper. For a learning problem with some known VC dimension, much is known about the order of growth of the sample-size requirement of the problem, as a function of the PAC parameters. The exact value of sample-size requirement is however less well-known, and depends heavily on the particular learning algorithm being used. This is a major obstacle to the practical application of the VC dimension. Hence it is important to know exactly how the sample-size requirement depends on VC dimension, and with that in mind, we describe a general algorithm for learning problems having VC dimension 1. Its sample-size requirement is minimal (as a function of the PAC parameters), and turns out to be the same for all non-trivial learning problems having VC dimension 1. While the method used cannot be naively generalised to higher VC dimension, it suggests that optimal algorithm-dependent bounds may improve substantially on current upper bounds.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.
Resumo:
A method for the exact solution of the Bragg-difrraction problem for a photorefractive grating in sillenite crystals based on Pauli matrices is proposed. For the two main optical configurations explicit analytical expressions are found for the diffraction efficiency and the polarization of the scattered wave. The exact solution is applied to a detailed analysis of a number of particular cases. For the known limiting cases there is agreement with the published results.
Resumo:
We address the question of how to communicate among distributed processes valuessuch as real numbers, continuous functions and geometrical solids with arbitrary precision, yet efficiently. We extend the established concept of lazy communication using streams of approximants by introducing explicit queries. We formalise this approach using protocols of a query-answer nature. Such protocols enable processes to provide valid approximations with certain accuracy and focusing on certain locality as demanded by the receiving processes through queries. A lattice-theoretic denotational semantics of channel and process behaviour is developed. Thequery space is modelled as a continuous lattice in which the top element denotes the query demanding all the information, whereas other elements denote queries demanding partial and/or local information. Answers are interpreted as elements of lattices constructed over suitable domains of approximations to the exact objects. An unanswered query is treated as an error anddenoted using the top element. The major novel characteristic of our semantic model is that it reflects the dependency of answerson queries. This enables the definition and analysis of an appropriate concept of convergence rate, by assigning an effort indicator to each query and a measure of information content to eachanswer. Thus we capture not only what function a process computes, but also how a process transforms the convergence rates from its inputs to its outputs. In future work these indicatorscan be used to capture further computational complexity measures. A robust prototype implementation of our model is available.
Resumo:
We develop and study the concept of dataflow process networks as used for exampleby Kahn to suit exact computation over data types related to real numbers, such as continuous functions and geometrical solids. Furthermore, we consider communicating these exact objectsamong processes using protocols of a query-answer nature as introduced in our earlier work. This enables processes to provide valid approximations with certain accuracy and focusing on certainlocality as demanded by the receiving processes through queries. We define domain-theoretical denotational semantics of our networks in two ways: (1) directly, i. e. by viewing the whole network as a composite process and applying the process semantics introduced in our earlier work; and (2) compositionally, i. e. by a fixed-point construction similarto that used by Kahn from the denotational semantics of individual processes in the network. The direct semantics closely corresponds to the operational semantics of the network (i. e. it iscorrect) but very difficult to study for concrete networks. The compositional semantics enablescompositional analysis of concrete networks, assuming it is correct. We prove that the compositional semantics is a safe approximation of the direct semantics. Wealso provide a method that can be used in many cases to establish that the two semantics fully coincide, i. e. safety is not achieved through inactivity or meaningless answers. The results are extended to cover recursively-defined infinite networks as well as nested finitenetworks. A robust prototype implementation of our model is available.
Resumo:
The dynamics of Boolean networks (BN) with quenched disorder and thermal noise is studied via the generating functional method. A general formulation, suitable for BN with any distribution of Boolean functions, is developed. It provides exact solutions and insight into the evolution of order parameters and properties of the stationary states, which are inaccessible via existing methodology. We identify cases where the commonly used annealed approximation is valid and others where it breaks down. Broader links between BN and general Boolean formulas are highlighted.
Resumo:
We obtain the exact asymptotic result for the disorder-averaged probability distribution function for a random walk in a biased Sinai model and show that it is characterized by a creeping behavior of the displacement moments with time,
Resumo:
A method for the exact solution of the Bragg-difrraction problem for a photorefractive grating in sillenite crystals based on Pauli matrices is proposed. For the two main optical configurations explicit analytical expressions are found for the diffraction efficiency and the polarization of the scattered wave. The exact solution is applied to a detailed analysis of a number of particular cases. For the known limiting cases there is agreement with the published results.
Resumo:
The Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic “secular variation” in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher-ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long-standing theoretical insufficiency by invoking a compact exact n-ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third-ordered perturbative solution, that leads to a seamless extension to higher-order (e.g., fifth-order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desired higher-ordered expansion may be compacted within the same representation, but without any aperiodicity in the spectral pattern of the wave guides.
Resumo:
We study the statistical and dynamical behavior of turbulent Kelvin waves propagating on quantized vortices in superfluids and address the controversy concerning the energy spectrum that is associated with these excitations. Finding the correct energy spectrum is important because Kelvin waves play a major role in the dissipation of energy in superfluid turbulence at near-zero temperatures. In this paper, we show analytically that the solution proposed by [L’vov and Nazarenko, JETP Lett. 91, 428 (2010)] enjoys existence, uniqueness, and regularity of the prefactor. Furthermore, we present numerical results of the dynamical equation that describes to leading order the nonlocal regime of the Kelvin-wave dynamics. We compare our findings with the analytical results from the proposed local and nonlocal theories for Kelvin-wave dynamics and show an agreement with the nonlocal predictions. Accordingly, the spectrum proposed by L’vov and Nazarenko should be used in future theories of quantum turbulence. Finally, for weaker wave forcing we observe an intermittent behavior of the wave spectrum with a fluctuating dissipative scale, which we interpreted as a finite-size effect characteristic of mesoscopic wave turbulence.