9 resultados para Evaluation results
em Aston University Research Archive
Resumo:
This paper discusses the first of three studies which collectively represent a convergence of two ongoing research agendas: (1) the empirically-based comparison of the effects of evaluation environment on mobile usability evaluation results; and (2) the effect of environment - in this case lobster fishing boats - on achievable speech-recognition accuracy. We describe, in detail, our study and outline our results to date based on preliminary analysis. Broadly speaking, the potential for effective use of speech for data collection and vessel control looks very promising - surprisingly so! We outline our ongoing analysis and further work.
Resumo:
This paper discusses the first of three studies which collectively represent a convergence of two ongoing research agendas: (1) the empirically-based comparison of the effects of evaluation environment on mobile usability evaluation results; and (2) the effect of environment - in this case lobster fishing boats - on achievable speech-recognition accuracy. We describe, in detail, our study and outline our results to date based on preliminary analysis. Broadly speaking, the potential for effective use of speech for data collection and vessel control looks very promising - surprisingly so! We outline our ongoing analysis and further work.
Resumo:
Multicast is an efficient approach to save network bandwidth for multimedia streaming services. To provide Quality of Services (QoS) for the multimedia services while maintain the advantage of multicast in bandwidth efficiency, admission control for multicast sessions are expected. Probe-based multicast admission control (PBMAC) schemes are of a sort of scalable and simple admission control for multicast. Probing scheme is the essence of PBMAC. In this paper, after a detailed survey on three existing probing schemes, we evaluate these schemes using simulation and analysis approaches in two aspects: admission correctness and group scalability. Admission correctness of the schemes is compared by simulation investigation. Analytical models for group scalability are derived, and validated by simulation results. The evaluation results illustrate the advantages and weaknesses of each scheme, which are helpful for people to choose proper probing scheme for network.
Resumo:
In this paper, we present syllable-based duration modelling in the context of a prosody model for Standard Yorùbá (SY) text-to-speech (TTS) synthesis applications. Our prosody model is conceptualised around a modular holistic framework. This framework is implemented using the Relational Tree (R-Tree) techniques. An important feature of our R-Tree framework is its flexibility in that it facilitates the independent implementation of the different dimensions of prosody, i.e. duration, intonation, and intensity, using different techniques and their subsequent integration. We applied the Fuzzy Decision Tree (FDT) technique to model the duration dimension. In order to evaluate the effectiveness of FDT in duration modelling, we have also developed a Classification And Regression Tree (CART) based duration model using the same speech data. Each of these models was integrated into our R-Tree based prosody model. We performed both quantitative (i.e. Root Mean Square Error (RMSE) and Correlation (Corr)) and qualitative (i.e. intelligibility and naturalness) evaluations on the two duration models. The results show that CART models the training data more accurately than FDT. The FDT model, however, shows a better ability to extrapolate from the training data since it achieved a better accuracy for the test data set. Our qualitative evaluation results show that our FDT model produces synthesised speech that is perceived to be more natural than our CART model. In addition, we also observed that the expressiveness of FDT is much better than that of CART. That is because the representation in FDT is not restricted to a set of piece-wise or discrete constant approximation. We, therefore, conclude that the FDT approach is a practical approach for duration modelling in SY TTS applications. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we explore the idea of social role theory (SRT) and propose a novel regularized topic model which incorporates SRT into the generative process of social media content. We assume that a user can play multiple social roles, and each social role serves to fulfil different duties and is associated with a role-driven distribution over latent topics. In particular, we focus on social roles corresponding to the most common social activities on social networks. Our model is instantiated on microblogs, i.e., Twitter and community question-answering (cQA), i.e., Yahoo! Answers, where social roles on Twitter include "originators" and "propagators", and roles on cQA are "askers" and "answerers". Both explicit and implicit interactions between users are taken into account and modeled as regularization factors. To evaluate the performance of our proposed method, we have conducted extensive experiments on two Twitter datasets and two cQA datasets. Furthermore, we also consider multi-role modeling for scientific papers where an author's research expertise area is considered as a social role. A novel application of detecting users' research interests through topical keyword labeling based on the results of our multi-role model has been presented. The evaluation results have shown the feasibility and effectiveness of our model.
Resumo:
In this paper we show how event processing over semantically annotated streams of events can be exploited, for implementing tracing and tracking of products in supply chains through the automated generation of linked pedigrees. In our abstraction, events are encoded as spatially and temporally oriented named graphs, while linked pedigrees as RDF datasets are their specific compositions. We propose an algorithm that operates over streams of RDF annotated EPCIS events to generate linked pedigrees. We exemplify our approach using the pharmaceuticals supply chain and show how counterfeit detection is an implicit part of our pedigree generation. Our evaluation results show that for fast moving supply chains, smaller window sizes on event streams provide significantly higher efficiency in the generation of pedigrees as well as enable early counterfeit detection.
Resumo:
In many e-commerce Web sites, product recommendation is essential to improve user experience and boost sales. Most existing product recommender systems rely on historical transaction records or Web-site-browsing history of consumers in order to accurately predict online users’ preferences for product recommendation. As such, they are constrained by limited information available on specific e-commerce Web sites. With the prolific use of social media platforms, it now becomes possible to extract product demographics from online product reviews and social networks built from microblogs. Moreover, users’ public profiles available on social media often reveal their demographic attributes such as age, gender, and education. In this paper, we propose to leverage the demographic information of both products and users extracted from social media for product recommendation. In specific, we frame recommendation as a learning to rank problem which takes as input the features derived from both product and user demographics. An ensemble method based on the gradient-boosting regression trees is extended to make it suitable for our recommendation task. We have conducted extensive experiments to obtain both quantitative and qualitative evaluation results. Moreover, we have also conducted a user study to gauge the performance of our proposed recommender system in a real-world deployment. All the results show that our system is more effective in generating recommendation results better matching users’ preferences than the competitive baselines.
Resumo:
IEEE 802.11 standard is the dominant technology for wireless local area networks (WLANs). In the last two decades, the Distributed coordination function (DCF) of IEEE 802.11 standard has become the one of the most important media access control (MAC) protocols for mobile ad hoc networks (MANETs). The DCF protocol can also be combined with cognitive radio, thus the IEEE 802.11 cognitive radio ad hoc networks (CRAHNs) come into being. There were several literatures which focus on the modeling of IEEE 802.11 CRAHNs, however, there is still no thorough and scalable analytical models for IEEE 802.11 CRAHNs whose cognitive node (i.e., secondary user, SU) has spectrum sensing and possible channel silence process before the MAC contention process. This paper develops a unified analytical model for IEEE 802.11 CRAHNs for comprehensive MAC layer queuing analysis. In the proposed model, the SUs are modeled by a hyper generalized 2D Markov chain model with an M/G/1/K model while the primary users (PUs) are modeled by a generalized 2D Markov chain and an M/G/1/K model. The performance evaluation results show that the quality-of-service (QoS) of both the PUs and SUs can be statistically guaranteed with the suitable settings of duration of channel sensing and silence phase in the case of under loading.