6 resultados para Evaluation of toxicity
em Aston University Research Archive
Resumo:
Reliable, high throughput, in vitro preliminary screening batteries have the potential to greatly accelerate the rate at which regulatory neurotoxicity data is generated. This study evaluated the importance of astrocytes when predicting acute toxic potential using a neuronal screening battery of pure neuronal (NT2.N) and astrocytic (NT2.A) and integrated neuronal/astrocytic (NT2.N/A) cell systems derived from the human NT2.D1 cell line, using biochemical endpoints (mitochondrial membrane potential (MMP) depolarisation and ATP and GSH depletion). Following exposure for 72 h, the known acute human neurotoxicants trimethyltin-chloride, chloroquine and 6-hydroxydopamine were frequently capable of disrupting biochemical processes in all of the cell systems at non-cytotoxic concentrations. Astrocytes provide key metabolic and protective support to neurons during toxic challenge in vivo and generally the astrocyte containing cell systems showed increased tolerance to toxicant insult compared with the NT2.N mono-culture in vitro. Whilst there was no consistent relationship between MMP, ATP and GSH log IC(50) values for the NT2.N/A and NT2.A cell systems, these data did provide preliminary evidence of modulation of the acute neuronal toxic response by astrocytes. In conclusion, the suitability of NT2 neurons and astrocytes as cell systems for acute toxicity screening deserves further investigation.
Resumo:
The aim of this study was to develop and characterize an intranasal delivery system for amantadine hydrochloride (AMT). Optimal formulations consisted of a thermosensitive polymer Pluronic® 127 and either carboxymethyl cellulose or chitosan which demonstrated gel transition at nasal cavity temperatures (34 ± 1°C). Rheologically, the loss tangent (Tan δ) confirmed a 3-stage gelation phenomena at 34 ± 1°C and non-Newtonian behavior. Storage of optimized formulation carboxymethyl cellulose and optimal formulation chitosan at 4°C for 8 weeks resulted in repeatable release profiles at 34°C when sampled, with a Fickian mechanism earlier on but moving toward anomalous transport by week 8. Polymers (Pluronic® 127, carboxymethyl cellulose, and chitosan) demonstrated no significant cellular toxicity to human nasal epithelial cells up to 4 mg/mL and up to 1 mM for AMT (IC50: 4.5 ± 0.05 mM). Optimized formulation carboxymethyl cellulose and optimal formulation chitosan demonstrated slower release across an in vitro human nasal airway model (43%-44% vs 79 ± 4.58% for AMT). Using a human nasal cast model, deposition into the olfactory regions (potential nose-to-brain) was demonstrated on nozzle insertion (5 mm), whereas tilting of the head forward (15°) resulted in greater deposition in the bulk of the nasal cavity.
Resumo:
The effects of ester plasticizers and copolymers on the mechanical properties of the natural biodegradable polymers, poly(3-hydroxybutyrate) [PHB] and poly(lactic acid) [PLA] have been studied after subjecting to melt processing conditions. Ester plasticizers were synthesized from citric, tartaric and maleic acids using various alcohols. A variety of PLA copolymers have also been prepared from poly(ethylene glycol) derivatives using stannous octanoate catalysed ring opening polymerisations of DL-lactide. A novel PLA star copolymer was also prepared from an ethoxylated pentaerythritol. The structures of these copolymers were determined by NMR spectroscopy. The plasticizing effect of the synthesised additives at various concentrations was determined. While certain additives were capable of improving the mechanical properties of PLA, none were effective in PHB. Moreover, it was found that certain combinations of additives exhibited synergistic effects. Possible mechanisms are discussed. Biotic and abiotic degradation studies showed that the plasticizers (esters and copolymers) did not inhibit the biodegradability of PHB or PLA in compost at 60°C. Simple toxicity tests carried out on compost extract and its ability to support the growth of cress seeds was established. PLA was found to be susceptible to limited thermal degradation under melt processing conditions. Conventional phenolic antioxidants showed no significant effect on this process, suggesting that degradation was not predominantly a free radical process. PLA also underwent photo-oxidative degradation with UV light and the process could be accelerated in the presence of a photoactivator such as iron (III) diisononyl dithiocarbamate. The mechanisms for the above processes are discussed. Finally, selected compounds were prepared on a pilot plant scale. Extruded and blown films were prepared containing these additives with conventional polymer processing equipment. The mechanical properties were similar to those obtained with laboratory produced compression moulded films.
Resumo:
A series of N1-benzylideneheteroarylcarboxamidrazones was prepared in an automated fashion, and tested against Mycobacterium fortuitum in a rapid screen for antimycobacterial activity. Many of the compounds from this series were also tested against Mycobacterium tuberculosis, and the usefulness as M.fortuitum as a rapid, initial screen for anti-tubercular activity evaluated. Various deletions were made to the N1-benzylideneheteroarylcarboxamidrazone structure in order to establish the minimum structural requirements for activity. The N1-benzylideneheteroarylcarbox-amidrazones were then subjected to molecular modelling studies and their activities against M.fortuitum and M.tuberculosis were analysed using quantitative structure-analysis relationship (QSAR) techniques in the computational package TSAR (Oxford Molecular Ltd.). A set of equations predictive of antimycobacterial activity was hereby obtained. The series of N1-benzylidenehetero-arylcarboxamidrazones was also tested against a multidrug-resistant strain of Staphylococcus aureus (MRSA), followed by a panel of Gram-positive and Gram-negative bacteria, if activity was observed for MRSA. A set of antimycobacterial N1-benzylideneheteroarylcarboxamidrazones was hereby discovered, the best of which had MICs against m. fortuitum in the range 4-8μgml-1 and displayed 94% inhibition of M.tuberculosis at a concentration of 6.25μgml-1. The antimycobacterial activity of these compounds appeared to be specific, since the same compounds were shown to be inactive against other classes of organisms. Compounds which were found to be sufficiently active in any screen were also tested for their toxicity against human mononuclear leucocytes. Polyethylene glycol (PEG) was used as a soluble polymeric support for the synthesis of some fatty acid derivatives, containing an isoxazoline group, which may inhibit mycolic acid synthesis in mycobacteria. Both the PEG-bound products and the cleaved, isolated products themselves were tested against M.fortuitum and some low levels of antimycobacterial activity were observed, which may serve as lead compounds for further studies.
Resumo:
We have evaluated the cytotoxicity of a series of novel anti-tubercular 2-pyridyl carboxamidrazones through incubation with human mononuclear leucocytes (MNL), with and without a rat microsomal metabolising system. Isoniazid (INH), the closest structurally related agent, was used as a positive control. Incubation of the 3-benzyloxy-benzylidene, dimethylpropyl-benzylidene and 4-phenyl-benzylidene with MNL showed no significant toxicity in comparison with either INH or DMSO vehicle control. However, the 4-N,N-dimethylamino-1-naphthylidene derivative exerted more than sevenfold greater toxicity compared with INH, while the 4-N,N-dimethylamino-1-naphthylidene, 2-benzyloxy-3-methoxy-benzylidene, 2-t-butylthio-benzylidene and 4-i-propyl-benzylidene derivatives showed toxicity which ranged from five to fourfold that of INH. In the presence of either rat microsomes with or without NADPH, the 3-benzyloxy-benzylidene, dimethylpropyl-benzylidene and 4-phenyl-benzylidene derivatives showed no metabolically-mediated cytotoxicity. The latter two derivatives showed a combination of low toxicity and considerable efficacy against Mycobacteria tuberculosis in vitro and show promise for future development. © 2001 Elsevier Science B.V.
Resumo:
A series of N1-benzylidene pyridine-2-carboxamidrazone anti-tuberculosis compounds has been evaluated for their cytotoxicity using human mononuclear leucocytes (MNL) as target cells. All eight compounds were significantly more toxic than dimethyl sulphoxide control and isoniazid (INH) with the exception of a 4-methoxy-3-(2-phenylethyloxy) derivative, which was not significantly different in toxicity compared with INH. The most toxic agent was an ethoxy derivative, followed by 3-nitro, 4-methoxy, dimethylpropyl, 4-methylbenzyloxy, 3-methoxy-4-(-2-phenylethyloxy) and 4-benzyloxy in rank order. In comparison with the effect of selected carboxamidrazone agents on cells alone, the presence of either N-acetyl cysteine (NAC) or glutathione caused a significant reduction in the toxicity of INH, as well as on the 4-benzyloxy derivative, although both increased the toxicity of a 4-N,N-dimethylamino-1-naphthylidene and a 2-t-butylthio derivative. The derivatives from this and three previous studies were subjected to computational analysis in order to derive equations designed to establish quantitative structure activity relationships for these agents. Twenty-five compounds were thus resolved into two groups (1 and 2), which on analysis yielded equations with r2 values in the range 0.65-0.92. Group 1 shares a common mode of toxicity related to hydrophobicity, where cytotoxicity peaked at logP of 3.2, while Group 2 toxicity was strongly related to ionisation potential. The presence of thiols such as NAC and GSH both promoted and attenuated toxicity in selected compounds from Group 1, suggesting that secondary mechanisms of toxicity were operating. These studies will facilitate the design of future low toxicity high activity anti-tubercular carboxamidrazone agents. © 2003 Elsevier Science B.V. All rights reserved.