2 resultados para Europeana portal API
em Aston University Research Archive
Resumo:
Forests play a pivotal role in timber production, maintenance and development of biodiversity and in carbon sequestration and storage in the context of the Kyoto Protocol. Policy makers and forest experts therefore require reliable information on forest extent, type and change for management, planning and modeling purposes. It is becoming increasingly clear that such forest information is frequently inconsistent and unharmonised between countries and continents. This research paper presents a forest information portal that has been developed in line with the GEOSS and INSPIRE frameworks. The web portal provides access to forest resources data at a variety of spatial scales, from global through to regional and local, as well as providing analytical capabilities for monitoring and validating forest change. The system also allows for the utilisation of forest data and processing services within other thematic areas. The web portal has been developed using open standards to facilitate accessibility, interoperability and data transfer.
Resumo:
Web APIs have gained increasing popularity in recent Web service technology development owing to its simplicity of technology stack and the proliferation of mashups. However, efficiently discovering Web APIs and the relevant documentations on the Web is still a challenging task even with the best resources available on the Web. In this paper we cast the problem of detecting the Web API documentations as a text classification problem of classifying a given Web page as Web API associated or not. We propose a supervised generative topic model called feature latent Dirichlet allocation (feaLDA) which offers a generic probabilistic framework for automatic detection of Web APIs. feaLDA not only captures the correspondence between data and the associated class labels, but also provides a mechanism for incorporating side information such as labelled features automatically learned from data that can effectively help improving classification performance. Extensive experiments on our Web APIs documentation dataset shows that the feaLDA model outperforms three strong supervised baselines including naive Bayes, support vector machines, and the maximum entropy model, by over 3% in classification accuracy. In addition, feaLDA also gives superior performance when compared against other existing supervised topic models.