23 resultados para Ethylene glycol

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oligo(ethylene glycol) (OEG) thiol self-assembled monolayer (SAM) decorated gold nanoparticles (AuNPs) have potential applications in bionanotechnology due to their unique property of preventing the nonspecific absorption of protein on the colloidal surface. For colloid-protein mixtures, a previous study (Zhang et al. J. Phys. Chem. A 2007, 111, 12229) has shown that the OEG SAM-coated AuNPs become unstable upon addition of proteins (BSA) above a critical concentration, c*. This has been explained as a depletion effect in the two-component system. Adding salt (NaCl) can reduce the value of c*; that is, reduce the stability of the mixture. In the present work, we study the influence of the nature of the added salt on the stability of this two-component colloid-protein system. It is shown that the addition of various salts does not change the stability of either protein or colloid in solution in the experimental conditions of this work, except that sodium sulfate can destabilize the colloidal solutions. In the binary mixtures, however, the stability of colloid-protein mixtures shows significant dependence on the nature of the salt: chaotropic salts (NaSCN, NaClO4, NaNO3, MgCl2) stabilize the system with increasing salt concentration, while kosmotropic salts (NaCl, Na2SO4, NH4Cl) lead to the aggregation of colloids with increasing salt concentration. These observations indicate that the Hofmeister effect can be enhanced in two-component systems; that is, the modification of the colloidal interface by ions changes significantly the effective depletive interaction via proteins. Real time SAXS measurements confirm in all cases that the aggregates are in an amorphous state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing degradable hydrogels is complicated by the structural and temporal complexities of the gel and evolving tissue. A major challenge is to create scaffolds with sufficient mechanical properties to restore initial function while simultaneously controlling temporal changes in the gel structure to facilitate tissue formation. Poly(ethylene glycol) was used in this work, to form biodegradable poly(ethylene glycol)-based hydrogels with hydrolyzable poly-l-lactide segments in the backbone. Non-degradable poly(ethylene glycol) was also introduced in the formulation to obtain control of the degradation profile that encompasses cell growth and new tissue formation. The dependence on polymer composition was observed by higher degradation profiles and decreased mechanical properties as the content of degradable segments was increased in the formulation. Based on in vitro tests, no toxicity of extracts or biomaterial in direct contact with human adipose tissue stem cells was observed, and the ultraviolet light treatment did not affect the proliferation capacity of the cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the kinetics of the phase-separation process of mixtures of colloid and protein in solutions by real-time UV-vis spectroscopy. Complementary small-angle X-ray scattering (SAXS) was employed to determine the structures involved. The colloids used are gold nanoparticles functionalized with protein resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11)(OCH(2)CH(2))(6)OMe (EG6OMe). After mixing with protein solution above a critical concentration, c*, SAXS measurements show that a scattering maximum appears after a short induction time at q = 0.0322 angstrom(-1) stop, which increases its intensity with time but the peak position does not change with time, protein concentration and salt addition. The peak corresponds to the distance of the nearest neighbor in the aggregates. The upturn of scattering intensities in the low q-range developed with time indicating the formation of aggregates. No Bragg peaks corresponding to the formation of colloidal crystallites could be observed before the clusters dropped out from the solution. The growth kinetics of aggregates is followed in detail by real-time UV-vis spectroscopy, using the flocculation parameter defined as the integral of the absorption in the range of 600-800 nm wavelengths. At low salt addition (<0.5 M), a kinetic crossover from reaction-limited cluster aggregation (RLCA) to diffusion-limited cluster aggregation (DLCA) growth model is observed, and interpreted as being due to the effective repulsive interaction barrier between colloids within the depletion potential. Above 0.5 M NaCl, the surface charge of proteins is screened significantly, and the repulsive potential barrier disappeared, thus the growth kinetics can be described by a DLCA model only.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer scaffolds play an important role in tissue engineering applications. Poly(ethylene glycol) based hydrogels have received a lot of attention in this field because of their high biocompatibility and ease of processing. However, in many cases they do not exhibit proper tissue invasion and nutrient transport because of their dense structure. In the present work, several approaches were developed and compared to each other to produce interconnected macroporous poly(ethylene glycol) hydrogels by including different types of porogens in the photocrosslinking reaction. The swelling capacity of the resulting hydrogels was analyzed and compared to non-porous hydrogel samples. Moreover, the obtained materials were characterized by means of mechanical properties and porosity using rheometry, scanning electron microscopy, and mercury intrusion porosimetry. Results showed that interconnected and uniform pores were obtained when a porogen template was used during hydrogel fabrication by photocrosslinking. On the other side, when the porogen particles were dispersed into the macromer solution before matrix photocrosslinking the interconnexion was negligible. The templates must be dissolved before the hydrogel's cell-seeding in vitro, while the dispersed porogen can be used in situ in the in vitro seeding tests. Copyright © 2013 Taylor & Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels containing carbon nanotubes (CNTs) are expected to be promising conjugates because they might show a synergic combination of properties from both materials. Most of the hybrid materials containing CNTs only entrap them physically, and the covalent attachment has not been properly addressed yet. In this study, single-walled carbon nanotubes (SWNTs) were successfully incorporated into a poly(ethylene glycol) (PEG) hydrogel by covalent bonds to form a hybrid material. For this purpose, SWNTs were functionalized with poly(ethylene glycol) methacrylate (PEGMA) to obtain water-soluble pegylated SWNTs (SWNT–PEGMA). These functionalized SWNTs were covalently bonded through their PEG moieties to a PEG hydrogel. The hybrid network was obtained from the crosslinking reaction of poly(ethylene glycol) diacrylate prepolymer and the SWNT–PEGMA by dual photo-UV and thermal initiations. The mechanical and swelling properties of the new hybrid material were studied. In addition, the material and lixiviates were analyzed to elucidate any kind of SWNT release and to evaluate a possible in vitro cytotoxic effect. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthetic hydrogel polymers were prepared by free radical photopolymerization in aqueous solution of the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid (Na-AMPS). Poly(ethylene glycol) diacrylate (PEGDA) and 4,4'-azo-bis(4-cyanopentanoic acid) were used as the crosslinker and UV-photoinitiator, respectively. The effects of varying the Na-AMPS monomer concentration within the range of 30-50% w/v and the crosslinker concentration within the range of 0.1-1.0% mol (relative to monomer) were studied in terms of their influence on water absorption properties. The hydrogel sheets exhibited extremely high swelling capacities in aqueous media which were dependent on monomer concentration, crosslink density, and the ionic strength and composition of the immersion medium. The effects of varying the number-average molecular weight of the PEGDA crosslinker from = 250 to 700 were also investigated. Interestingly, it was found that increasing the molecular weight and therefore the crosslink length at constant crosslink density decreased both the rate of water absorption and the equilibrium water content. Cytotoxicity testing by the direct contact method with mouse fibroblast L929 cells indicated that the synthesized hydrogels were nontoxic. On the basis of these results, it is considered that photopolymerized Na-AMPS hydrogels crosslinked with PEGDA show considerable potential for biomedical use as dressings for partial thickness burns. This paper describes some structural effects which are relevant to their design as biomaterials for this particular application. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interactions between proteins and gold colloids functionalized with protein-resistant oligo(ethylene glycol) (OEG) thiol, HS(CH(2))(11) (OCH(2)CH(2))(6)OMe (EG(6)OMe), in aqueous solution have been studied by small-angle X-ray scattering (SAXS) and UV-vis spectroscopy. The mean size, 2R, and the size distribution of the decorated gold colloids have been characterized by SAXS. The monolayer-protected gold colloids have no correlations due to the low volume fraction in solution and are stable in a wide range of temperatures (5-70 degrees C, pH (1.3-12.4), and ionic strength (0-1.0 M). In contrast, protein (bovine serum albumin) solutions with concentrations in the range of 60-200 mg/mL (4.6-14.5 vol show a pronounced correlation peak in SAXS, which results from the repulsive electrostatic interaction between charged proteins. These protein interactions show significant dependence on ionic strength, as would be expected for an electrostatic interaction (Zhang et al. J. Phys. Chem. B 2007, 111, 251). For a mixture of proteins and gold colloids, the protein-protein interaction changes little upon mixing with OEG-decorated gold colloids. In contrast, the colloid-colloid interaction is found to be strongly dependent on the protein concentration and the size of the colloid itself. Adding protein to a colloidal solution results in an attractive depletion interaction between functionalized gold colloids, and above a critical protein concentration, c*, the colloids form aggregates and flocculate. Adding salt to such mixtures enhances the depletion effect and decreases the critical protein concentration. The aggregation is a reversible process (i.e., diluting the solution leads to dissolution of aggregates). The results also indicate that the charge of the OEG self-assembled monolayer at a curved interface has a rather limited effect on the colloidal stabilization and the repulsive interaction with proteins.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Co-polymerisation of α-styryl-poly(ethylene glycol)300, α,ω-bis(styryl)-penta(ethylene glycol) and 2,5-diphenyl-4-(4′-vinylbenzyl)oxazole in varying molar ratios resulted in the production of chemically functionalised scintillant-containing poly(oxyethylene glycol) polymer (POP-Sc) supports. These materials are compatible with both aqueous and organic solvents, and possess the ability to scintillate efficiently in the presence of ionising radiation, even after prolonged and repeated exposure to organic solvents. The utility of POP-Sc supports in both solid-phase peptide chemistry and a functional scintillation proximity assay has been exemplified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate a single-step method for the generation of collagen and poly-l-Lysine (PLL) micropatterns on a poly(ethylene glycol) (PEG) functionalized glass surface for cell based assays. The method involves establishing a reliable silanization method to create an effective non-adhesive PEG layer on glass that inhibits cell attachment, followed by the spotting of collagen or PLL solutions using non-contact piezoelectric printing. We show for the first time that the spotted protein micropatterns remain stable on the PEG surface even after extensive washing, thus significantly simplifying protein pattern formation. We found that adherence and spreading of NIH-3T3 fibroblasts was confined to PLL and collagen areas of the micropatterns. In contrast, primary rat hepatocytes adhered and spread only on collagen micropatterns, where they formed uniform, well defined functionally active cell arrays. The differing affinity of hepatocytes and NIH-3T3 fibroblasts for collagen and PLL patterns was used to develop a simple technique for creating a co-culture of the two cell types. This has the potential to form structured arrays that mimic the in vivo hepatic environment and is easily integrated within a miniaturized analytical platform for developing high throughput toxicity analysis in vitro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of ester plasticizers and copolymers on the mechanical properties of the natural biodegradable polymers, poly(3-hydroxybutyrate) [PHB] and poly(lactic acid) [PLA] have been studied after subjecting to melt processing conditions. Ester plasticizers were synthesized from citric, tartaric and maleic acids using various alcohols. A variety of PLA copolymers have also been prepared from poly(ethylene glycol) derivatives using stannous octanoate catalysed ring opening polymerisations of DL-lactide. A novel PLA star copolymer was also prepared from an ethoxylated pentaerythritol. The structures of these copolymers were determined by NMR spectroscopy. The plasticizing effect of the synthesised additives at various concentrations was determined. While certain additives were capable of improving the mechanical properties of PLA, none were effective in PHB. Moreover, it was found that certain combinations of additives exhibited synergistic effects. Possible mechanisms are discussed. Biotic and abiotic degradation studies showed that the plasticizers (esters and copolymers) did not inhibit the biodegradability of PHB or PLA in compost at 60°C. Simple toxicity tests carried out on compost extract and its ability to support the growth of cress seeds was established. PLA was found to be susceptible to limited thermal degradation under melt processing conditions. Conventional phenolic antioxidants showed no significant effect on this process, suggesting that degradation was not predominantly a free radical process. PLA also underwent photo-oxidative degradation with UV light and the process could be accelerated in the presence of a photoactivator such as iron (III) diisononyl dithiocarbamate. The mechanisms for the above processes are discussed. Finally, selected compounds were prepared on a pilot plant scale. Extruded and blown films were prepared containing these additives with conventional polymer processing equipment. The mechanical properties were similar to those obtained with laboratory produced compression moulded films.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aims of this project were:1) the synthesis of a range of new polyether-based vinylic monomers and their incorporation into poly(2-hydroxyethyl methacrylate) (poly(HEMA)) based hydrogel networks, of interest to the contact lens industry.2) the synthesis of a range of alkyltartronic acids, and their derivatives. These molecules may ultimately be used to produce functionalised poly(-hydroxy acids) of potential interest in either drug delivery or surgical suture applications. The novel syntheses of a range of both methoxy poly(ethylene glycol) acrylates (MPEGAs) and poly(ethylene glycol) acrylates (PEGAs) are described. Products were obtained in very good yields. These new polyether-based vinylic monomers were copolymerised with 2-hydroxyethyl methacrylate (HEMA) to produce a range of hydrogels. The equilibrium water contents (EWC) and surface properties of these copolymers containing linear polyethers were examined. It was found that the EWC was enhanced by the presence of the hydrophilic polyether chains.Results suggest that the polyether side chains express themselves at the polymer surface, thus dictating the surface properties of the gels. Consequentially, this leads to an advantageous reduction in the surface adhesion of biological species. A synthesis of a range of alkyltartronic acids is also described. The acids prepared were obtained in very good yields using a novel four-stage synthesis. These acids were modified to give potassium monoethyl alkyltartronates. Although no polyesterification is described in this thesis, these modified alkyltartronic acid derivatives are considered to be potentially excellent starting materials for poly (alkyltartronic acid) synthesis via anhydrocarboxylate or anhydrosulphite cyclic monomers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research described in this thesis explored the synthesis tlnd characteristltion of biocompatible and biodegradable polymers of lactide through non-toxic titanium alkoxide nitiators. The research objectives focused on the preparation of polylactides in both solvent and solventless media, to produce materials with a wide range of molecular weights. The polylactides were fully characterised using gel permeation chromatography and 1H and 13C NMR spectroscopy. NMR spectroscopy was carried out in the study the reaction mechanisms. Kinetic studies of the ring opening polymerisation of lactide with titanium alkoxide initiators were also conducted using NMR spectroscopy. The objectives of this research were also focused on the enhancement of the flexibility of the polymer chains by synthesising random and block copolymers of lactide and ε-caprolactone using Ti(0-i-Pr)4 as an initiator, This work involved extensive characterisalion of the synthesised copolymers using gel permeation chromatography and 1H and 13C NMR spectroscopic analysis. Kinetic studies of the ring opening polymerisation of ε-caplrolactone and of the copolymerisation of lactide and ε-caprolactone with Ti(O-i-Pr)4 as an initiator were also carried out. The last section of this work involved the synthesis of block and star-shaped copolymers of lactide and poly(ethylene glycol) [PEG]. The preparation of lactide/PEG block copolymers was carried out by ring opening polymerisation of L-Iactide using Ti(O-i-Pr)4 as an initiator and hydroxyl-terminated PEG's with different numbers of hydroxyl groups as co-initiators both in solution and solventless media. These all-in-one polymersations yielded the synthesis of both lactide homopolymer and lactide/PEG block copolymer. In order to selectively synthesise copolymers of lactide and PEG, the experiment was carried out in two steps. The first step consisted of the synthesis of a titanium macro-initiator by exchanging the iso-propoxide ligands by PEG with different numbers of hydroxyl groups. The second step involved the ring opening polymerisation of lactide using the titanium macrocatalyst that was prepared as an initiator. The polymerisations were carried out in a solventless media. The synthesis of lactide/PEG copolymers using polyethylene glycol with amino terminal groups was also discussed. Extensive characterisation of the lactide block copolymers and macroinitiators was carried out using techniques such as, gel permeation chromatography (GPC), NMR spectroscopy and differential scanning calorimeter (DeS).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The efficacy of antisense oligonucleotide (ODN) therapy is dependent on four major parameters: delivery to cells, intracellular stability and localisation and efficient action at the target site.The aim of this project was to study the delivery of ODNs to macrophages and to assess the stability of two ODN conjugates, in vitro. The first conjugate aimed to improve uptake of ODNs via mannose receptor mediated delivery, the second investigated the improved delivery of ODN conjugates via non-specific lipophilic interaction with the cell membrane. A mono-mannose phosphoramidite derivative was designed and synthesised and a mono-mannose ODN conjugate synthesised by standard phosphoramidite chemistry. Delivery of this conjugate was enhanced to RAW264.7 and J774 macrophage cell lines via a mechanism of receptor mediated endocytosis. The delivery of three lipophilic ODN conjugates, cholesterol (cholhex), 16-carbon alkyl chain (C16) and hexa-ethylene glycol (HEG) moieties and an unconjugated ODN were assessed in RAW264.7 macrophages. All three conjugates increased the lipophilicity of the ODN as assessed from partition coefficient data. Both the cholhex and unconjugated ODNs were found to have higher degrees of cellular association than the C16 and HEG conjugates. Cellular uptake studies implicated internalisation of these ODNs by an adsorptive endocytosis mechanism. Following endocytosis, ODNs must remain stable during their residence in endosomal/lysosomal compartments prior to exiting and exerting their biological action in either the cytosol or nucleus. Assessment of in vitro stability in a lysosomal extract revealed the cholhex conjugate and unconjugated ODNs to have a longer half-life than the C16 and HEG conjugated ODNs, highlighting the influence of conjugate moieties on lysosomal stability. The effects of base composition and length on stability in a lysosomal extract revealed the longest half-life for homo-cytidine ODNs and ODNs over 20 nucleotides in length. These studies suggest that the above conjugates can enhance cellular association and delivery of antisense ODNs to cultured macrophages. This may lead to their use in treating disorders such as HIV infection, which affects this cell type.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dielectric properties of pure low to medium molecular weight poly(ethylene glycol) and poly(propylene glycol) and a variety of their salt complexes have been studied through the measurement of the dielectric permittivity and dielectric loss over a range of frequency and temperature. The major proportion of this study has been concerned with the examination of the nature of the interaction between mercuric chloride and poly(propylene glycol) (PPG). Other salt-poly-ether combinations have also been considered such as cobalt chloride-PPG cadmium chloride-PPG zinc chloride-PPG and ferric chloride-PEG (polyethylene glycol). Some of this work was also supported by chemical shift and spin-lattice Nuclear Magnetic Resonance (N.M.R.) spectroscopy. The dielectric permittivity data were analysed using the Onsager relation to calculate the mean dipole moment per dipolar unit. This approach was employed in the discussion of various models proposed for the structure of salt-polyether complexes. The effect of mercuric chloride on the statistical conformations of poly(propylene-glycol) was studied in a quantitative manner using the relationships of marchal-Benoit. The dielectric relaxation activation energy and mean energy difference between gauche and trans conformations of poly(propylene glycol) in the presence of mercuric chloride, both showed a distinct minimum when the concentration of mercuric chloride was close to 5 mole %. Opposite behaviour was observed for the Cole-Cole parameter. It was concluded that the majority of the dielectric data could be rationalised in terms of a 5-membered cyclic complex formed between mercuric chloride and PPG in which the complexed segment of the polyether-(OMeCH2CH2O)- adopted either gauche or cis conformations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A scintillation proximity assay (SPA) has been used successfully to detect and quantify, in real-time, the kinetic progress of hydrolysis of [ H]acetate esters from scintillant-containing styrenic and poly(ethylene glycol) (PEG)-based polymer supports in both organic and aqueous media.