2 resultados para Estudos de validação - Validation studies

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis begins with a review of the literature on team-based working in organisations, highlighting the variations in research findings, and the need for greater precision in our measurement of teams. It continues with an illustration of the nature and prevalence of real and pseudo team-based working, by presenting results from a large sample of secondary data from the UK National Health Service. Results demonstrate that ‘real teams’ have an important and significant impact on the reduction of many work-related safety outcomes. Based on both theoretical and methodological limitations of existing approaches, the thesis moves on to provide a clarification and extension of the ‘real team’ construct, demarcating this from other (pseudo-like) team typologies on a sliding scale, rather than a simple dichotomy. A conceptual model for defining real teams is presented, providing a theoretical basis for the development of a scale on which teams can be measured for varying extents of ‘realness’. A new twelve-item scale is developed and tested with three samples of data comprising 53 undergraduate teams, 52 postgraduate teams, and 63 public sector teams from a large UK organisation. Evidence for the content, construct and criterion-related validity of the real team scale is examined over seven separate validation studies. Theoretical, methodological and practical implications of the real team scale are then discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was concerned with investigating methods of improving the IOP pulse’s potential as a measure of clinical utility. There were three principal sections to the work. 1. Optimisation of measurement and analysis of the IOP pulse. A literature review, covering the years 1960 – 2002 and other relevant scientific publications, provided a knowledge base on the IOP pulse. Initial studies investigated suitable instrumentation and measurement techniques. Fourier transformation was identified as a promising method of analysing the IOP pulse and this technique was developed. 2. Investigation of ocular and systemic variables that affect IOP pulse measurements In order to recognise clinically important changes in IOP pulse measurement, studies were performed to identify influencing factors. Fourier analysis was tested against traditional parameters in order to assess its ability to detect differences in IOP pulse. In addition, it had been speculated that the waveform components of the IOP pulse contained vascular characteristic analogous to those components found in arterial pulse waves. Validation studies to test this hypothesis were attempted. 3. The nature of the intraocular pressure pulse in health and disease and its relation to systemic cardiovascular variables. Fourier analysis and traditional parameters were applied to the IOP pulse measurements taken on diseased and healthy eyes. Only the derived parameter, pulsatile ocular blood flow (POBF) detected differences in diseased groups. The use of an ocular pressure-volume relationship may have improved the POBF measure’s variance in comparison to the measurement of the pulse’s amplitude or Fourier components. Finally, the importance of the driving force of pulsatile blood flow, the arterial pressure pulse, is highlighted. A method of combining the measurements of pulsatile blood flow and pulsatile blood pressure to create a measure of ocular vascular impedance is described along with its advantages for future studies.