3 resultados para Error bounds

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficacy of a specially constructed Gallager-type error-correcting code to communication in a Gaussian channel is examined. The construction is based on the introduction of complex matrices, used in both encoding and decoding, which comprise sub-matrices of cascading connection values. The finite-size effects are estimated for comparing the results with the bounds set by Shannon. The critical noise level achieved for certain code rates and infinitely large systems nearly saturates the bounds set by Shannon even when the connectivity used is low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyse Gallager codes by employing a simple mean-field approximation that distorts the model geometry and preserves important interactions between sites. The method naturally recovers the probability propagation decoding algorithm as a minimization of a proper free-energy. We find a thermodynamical phase transition that coincides with information theoretical upper-bounds and explain the practical code performance in terms of the free-energy landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we use statistical physics techniques to study the typical performance of four families of error-correcting codes based on very sparse linear transformations: Sourlas codes, Gallager codes, MacKay-Neal codes and Kanter-Saad codes. We map the decoding problem onto an Ising spin system with many-spins interactions. We then employ the replica method to calculate averages over the quenched disorder represented by the code constructions, the arbitrary messages and the random noise vectors. We find, as the noise level increases, a phase transition between successful decoding and failure phases. This phase transition coincides with upper bounds derived in the information theory literature in most of the cases. We connect the practical decoding algorithm known as probability propagation with the task of finding local minima of the related Bethe free-energy. We show that the practical decoding thresholds correspond to noise levels where suboptimal minima of the free-energy emerge. Simulations of practical decoding scenarios using probability propagation agree with theoretical predictions of the replica symmetric theory. The typical performance predicted by the thermodynamic phase transitions is shown to be attainable in computation times that grow exponentially with the system size. We use the insights obtained to design a method to calculate the performance and optimise parameters of the high performance codes proposed by Kanter and Saad.