3 resultados para Environmental concerns

em Aston University Research Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Currently, the main source for the production of liquid transportation fuels is petroleum, the continued use of which faces many challenges including depleting oil reserves, significant oil price rises, and environmental concerns over global warming which is widely believed to be due to fossil fuel derived CO2 emissions and other greenhouse gases. In this respect, lignocellulosic or plant biomass is a particularly interesting resource as it is the only renewable source of organic carbon that can be converted into liquid transportation fuels. The gasification of biomass produces syngas which can then be converted into synthetic liquid hydrocarbon fuels by means of the Fischer-Tropsch (FT) synthesis. This process has been widely considered as an attractive option for producing clean liquid hydrocarbon fuels from biomass that have been identified as promising alternatives to conventional fossil fuels like diesel and kerosene. The resulting product composition in FT synthesis is influenced by the type of catalyst and the reaction conditions that are used in the process. One of the issues facing this conversion process is the development of a technology that can be scaled down to match the scattered nature of biomass resources, including lower operating pressures, without compromising liquid composition. The primary aims of this work were to experimentally explore FT synthesis at low pressures for the purpose of process down-scaling and cost reduction, and to investigate the potential for obtaining an intermediate FT synthetic crude liquid product that can be integrated into existing refineries under the range of process conditions employed. Two different fixed-bed micro-reactors were used for FT synthesis; a 2cm3 reactor at the University of Rio de Janeiro (UFRJ) and a 20cm3 reactor at Aston University. The experimental work firstly involved the selection of a suitable catalyst from three that were available. Secondly, a parameter study was carried out on the 20cm3 reactor using the selected catalyst to investigate the influence of reactor temperature, reactor pressure, space velocity, the H2/CO molar ratio in the feed syngas and catalyst loading on the reaction performance measured as CO conversion, catalyst stability, product distribution, product yields and liquid hydrocarbon product composition. From this parameter study a set of preferred operating conditions was identified for low pressure FT synthesis. The three catalysts were characterized using BET, XRD, TPR and SEM. The catalyst selected was an unpromoted Co/Al2O3 catalyst. FT synthesis runs on the 20cm3 reactor at Aston were conducted for 48 hours. Permanent gases and light hydrocarbons (C1-C5) were analysed in an online GC-TCD/FID at hourly intervals. The liquid hydrocarbons collected were analyzed offline using GC-MS for determination of fuel composition. The parameter study showed that CO conversion and liquid hydrocarbon yields increase with increasing reactor pressure up to around 8 bar, above which the effect of pressure is small. The parameters that had the most significant influence on CO conversion, product selectivity and liquid hydrocarbon yields were reactor temperature and catalyst loading. The preferred reaction conditions identified for this research were: T = 230ºC, P = 10 bar, H2/CO = 2.0, WHSV = 2.2 h-1, and catalyst loading = 2.0g. Operation in the low range of pressures studied resulted in low CO conversions and liquid hydrocarbon yields, indicating that low pressure BTL-FT operation may not be industrially viable as the trade off in lower CO conversions and once-through liquid hydrocarbon product yields has to be carefully weighed against the potential cost savings resulting from process operation at lower pressures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The projected decline in fossil fuel availability, environmental concerns, and security of supply attract increased interest in renewable energy derived from biomass. Fast pyrolysis is a possible thermochemical conversion route for the production of bio-oil, with promising advantages. The purpose of the experiments reported in this thesis was to extend our understanding of the fast pyrolysis process for straw, perennial grasses and hardwoods, and the implications of selective pyrolysis, crop harvest and storage on the thermal decomposition products. To this end, characterisation and laboratory-scale fast pyrolysis were conducted on the available feedstocks, and their products were compared. The variation in light and medium volatile decomposition products was investigated at different pyrolysis temperatures and heating rates, and a comparison of fast and slow pyrolysis products was conducted. Feedstocks from different harvests, storage durations and locations were characterised and compared in terms of their fuel and chemical properties. A range of analytical (e.g. Py-GC-MS and TGA) and processing equipment (0.3 kg/h and 1.0 kg/h fast pyrolysis reactors and 0.15 kg slow pyrolysis reactor) was used. Findings show that the high bio-oil and char heating value, and low water content of willow short rotation coppice (SRC) make this crop attractive for fast pyrolysis processing compared to the other investigated feedstocks in this project. From the analytical sequential investigation of willow SRC, it was found that the volatile product distribution can be tailored to achieve a better final product, by a variation of the heating rate and temperature. Time of harvest was most influential on the fuel properties of miscanthus; overall the late harvest produced the best fuel properties (high HHV, low moisture content, high volatile content, low ash content), and storage of the feedstock reduced the moisture and acid content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanotechnologies have been called the "Next Industrial Revolution." At the same time, scientists are raising concerns about the potential health and environmental risks related to the nano-sized materials used in nanotechnologies. Analyses suggest that current U.S. federal regulatory structures are not likely to adequately address these risks in a proactive manner. Given these trends, the premise of this paper is that state and local-level agencies will likely deal with many "end-of-pipe" issues as nanomaterials enter environmental media without prior toxicity testing, federal standards, or emissions controls. In this paper we (1) briefly describe potential environmental risks and benefits related to emerging nanotechnologies; (2) outline the capacities of the Toxic Substances Control Act, the Clean Air Act, the Clean Water Act, and the Resources Conservation and Recovery Act to address potential nanotechnology risks, and how risk data gaps challenge these regulations; (3) outline some of the key data gaps that challenge state-level regulatory capacities to address nanotechnologies' potential risks, using Wisconsin as a case study; and (4) discuss advantages and disadvantages of state versus federal approaches to nanotechnology risk regulation. In summary, we suggest some ways government agencies can be better prepared to address nanotechnology risk knowledge gaps and risk management.