6 resultados para Energy sustainability

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

tentially valuable innovations. In energy policy, much attention is given to analysing and incentivising customer demand, but new technologies also need new supply markets, to provide products and services to build, operate and maintain the innovative technology. This paper addresses the impact of supply constraints on the long-term viability of sustainability related innovations, using the case of energy from waste (EfW). Uncertainties in the pricing and availability of feedstock (i.e. waste) deter potential investors in EfW projects. We draw on prior supply management research to conceptualise the problem, and identify what steps might be taken to address it. Based on this analysis, we propose a research agenda aimed at purchasing and supply scholars and centred on the need to understand better how markets evolve and how stakeholders can (legitimately) influence the evolution of supply markets to support the adoption of sustainability related innovation. Within this broad case, specific themes are recommended for further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Grape is one of the world's largest fruit crops with approximately 67.5 million tonnes produced each year and energy is an important element in modern grape productions as it heavily depends on fossil and other energy resources. Efficient use of these energies is a necessary step toward reducing environmental hazards, preventing destruction of natural resources and ensuring agricultural sustainability. Hence, identifying excessive use of energy as well as reducing energy resources is the main focus of this paper to optimize energy consumption in grape production.In this study we use a two-stage methodology to find the association of energy efficiency and performance explained by farmers' specific characteristics. In the first stage a non-parametric Data Envelopment Analysis is used to model efficiencies as an explicit function of human labor, machinery, chemicals, FYM (farmyard manure), diesel fuel, electricity and water for irrigation energies. In the second step, farm specific variables such as farmers' age, gender, level of education and agricultural experience are used in a Tobit regression framework to explain how these factors influence efficiency of grape farming.The result of the first stage shows substantial inefficiency between the grape producers in the studied area while the second stage shows that the main difference between efficient and inefficient farmers was in the use of chemicals, diesel fuel and water for irrigation. The use of chemicals such as insecticides, herbicides and fungicides were considerably less than inefficient ones. The results revealed that the more educated farmers are more energy efficient in comparison with their less educated counterparts. © 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Often it is commercial, not technological, factors which hinder the adoption of potentially valuable innovations. In energy policy, much attention is given to analysing and incentivising consumer demand for renewable energy, but new technologies may also need new supply markets, to provide products and services to build, operate and maintain the innovative technology. This paper addresses the impact of supply constraints on the long-term viability of sustainability related innovations, using the case of bioenergy from organic waste. Uncertainties in the pricing and availability of feedstock (i.e. waste) may generate market deadlock and deter potential investors. We draw on prior research to conceptualise the problem, and identify what steps might be taken to address it. We propose a research agenda aimed at purchasing and supply scholars and centred on the need to understand better the interplay between market evolution and supply uncertainty and 'market shaping' - how stakeholders can legitimately influence supply market evolution - to support the adoption of sustainability related innovation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable development requires combining economic viability with energy and environment conservation and ensuring social benefits. It is conceptualized that for designing a micro industry for sustainable rural industrialization, all these aspects should be integrated right up front. The concept includes; (a) utilization of local produce for value addition in a cluster of villages and enhancing income of the target population; (b) use of renewable energy and total utilization of energy generated by co and trigeneration (combining electric power production with heat utilization for heating and cooling); (c) conservation of water and complete recycling of effluents; (d) total utilization of all wastes for achieving closure towards a zero waste system. Enhanced economic viability and sustainability is achieved by integration of appropriate technologies into the industrial complex. To prove the concept, a model Micro Industrial Complex (MIC) has been set up in a semi arid desert region in Rajasthan, India at village Malunga in Jodhpur district. A biomass powered boiler and steam turbine system is used to generate 100-200 KVA of electric power and high energy steam for heating and cooling processes downstream. The unique feature of the equipment is a 100-150 kW back-pressure steam turbine, utilizing 3-4 tph (tonnes per hour) steam, developed by M/s IB Turbo. The biomass boiler raises steam at about 20 barg 3 tph, which is passed through a turbine to yield about 150 kW of electrical power. The steam let out at a back pressure of 1-3 barg has high exergy and this is passed on as thermal energy (about 2 MW), for use in various applications depending on the local produce and resources. The biomass fuel requirement for the boiler is 0.5-0.75 tph depending on its calorific value. In the current model, the electricity produced is used for running an oil expeller to extract castor oil and the castor cake is used as fuel in the boiler. The steam is used in a Multi Effect Distillation (MED) unit for drinking water production and in a Vapour Absorption Machine (VAM) for cooling, for banana ripening application. Additional steam is available for extraction of herbs such as mint and processing local vegetables. In this paper, we discuss the financial and economic viability of the system and show how the energy, water and materials are completely recycled and how the benefits are directed to the weaker sections of the community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal aim of this paper is to examine the criteria assisting in the selection of biomass for energy generation in Brazil. To reach the aim, this paper adopts case study and survey research methods to collect information from four biomass energy case companies and solicits opinions from experts. The data gathered are analysed in line with a wide range of related data, including selection criteria for biomass and its importance, energy policies in Brazil, availability of biomass feedstock in Brazil and its characteristics, as well as status quo of biomass-based energy in Brazil. The findings of the paper demonstrate that there are ten main criteria in biomass selection for energy generation in Brazil. They comprise geographical conditions, availability of biomass feedstock, demand satisfaction, feedstock costs and oil prices, energy content of biomass feedstock, business and economic growth, CO2 emissions of biomass end-products, effects on soil, water and biodiversity, job creation and local community support, as well as conversion technologies. Furthermore, the research also found that these main criteria cannot be grouped on the basis of sustainability criteria, nor ranked by their importance as there is correlation between each criterion such as a cause and effect relationship, as well as some overlapping areas. Consequently, this means that when selecting biomass more comprehensive consideration is advisable.