19 resultados para Energy level splitting

em Aston University Research Archive


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

N-doped ZnO/g-C3N4 hybrid core–shell nanoplates have been successfully prepared via a facile, cost-effective and eco-friendly ultrasonic dispersion method for the first time. HRTEM studies confirm the formation of the N-doped ZnO/g-C3N4 hybrid core–shell nanoplates with an average diameter of 50 nm and the g-C3N4 shell thickness can be tuned by varying the content of loaded g-C3N4. The direct contact of the N-doped ZnO surface and g-C3N4 shell without any adhesive interlayer introduced a new carbon energy level in the N-doped ZnO band gap and thereby effectively lowered the band gap energy. Consequently, the as-prepared hybrid core–shell nanoplates showed a greatly enhanced visible-light photocatalysis for the degradation of Rhodamine B compare to that of pure N-doped ZnO surface and g-C3N4. Based on the experimental results, a proposed mechanism for the N-doped ZnO/g-C3N4 photocatalyst was discussed. Interestingly, the hybrid core–shell nanoplates possess high photostability. The improved photocatalytic performance is due to a synergistic effect at the interface of the N-doped ZnO and g-C3N4 including large surface-exposure area, energy band structure and enhanced charge-separation properties. Significantly, the enhanced performance also demonstrates the importance of evaluating new core–shell composite photocatalysts with g-C3N4 as shell material.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research project has developed a novel decision support system using Geographical Information Systems and Multi Criteria Decision Analysis and used it to develop and evaluate energy-from-waste policy options. The system was validated by applying it to the UK administrative areas of Cornwall and Warwickshire. Different strategies have been defined by the size and number of the facilities, as well as the technology chosen. Using sensitivity on the results from the decision support system, it was found that key decision criteria included those affected by cost, energy efficiency, transport impacts and air/dioxin emissions. The conclusions of this work are that distributed small-scale energy-from-waste facilities score most highly overall and that scale is more important than technology design in determining overall policy impact. This project makes its primary contribution to energy-from-waste planning by its development of a Decision Support System that can be used to assist waste disposal authorities to identify preferred energy-from-waste options that have been tailored specifically to the socio-geographic characteristics of their jurisdictional areas. The project also highlights the potential of energy-from-waste policies that are seldom given enough attention to in the UK, namely those of a smaller-scale and distributed nature that often have technology designed specifically to cater for this market.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study was made of the effect of supplementing a rich 3% (w/v) tryptone soya broth (TSB) medium and a poorer 1.7% (w/v) tryptone-based medium with glucose, maltose and glycogen, as carbon sources, on growth and exoprotein formation by Aeromonas salmonicida. In TSB, glucose inhibited growth and repressed exoprotein formation whilst maltose and glycogen had little effect, up to 20 h, when compared with an unsupplemented control. By contrast, in the poorer medium, over a 24-h incubation period, growth was stimulated three-fold by glycogen, and whilst exoprotein formation was low in comparison with that observed in TSB, the greatest production was observed in the presence of glycogen. Extracellular alpha-amylase was measured in the tryptone medium in the presence of the three carbon sources and the highest level, produced in the presence of glycogen, was 1.6 times that with added maltose whilst none was detectable with glucose present. This pattern was repeated in the case of the maltose-inducible porin, LamB, of the outer membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aim of this thesis is to evaluate the economic and socio-economic viability of energy crops as raw material for bioenergy schemes at the local level. The case examined is Greece, a southern Mediterranean country. Based on the current state, on foreseen trends and on the information presented in the literature review (conducted at the beginning of the study), the main goal was defined as follows: To examine the evidence supporting a strong role for dedicated energy crops local bioenergy developments in Greece, a sector that is forecasted to be increasingly important in the short to medium term.' Two perennial energy crops, cardoon (Cynara cardunculus L.) and giant reed (Arundo donax L.) were evaluated. The thesis analysed their possible introduction in the agricultural system of Rhodope, northern Greece, as alternative land use, through comparative financial appraisal with the main conventional crops. Based on the output of this comparative analysis, the breakeven for the two selected energy crops was defined along with a sensitivity analysis for the risk of the potential implementation. Following, the author performed an economic and socio-economic evaluation of a district heating system fuelled with energy crops in the selected region. Finally, the author, acknowledging that bioenergy deployment should be studied in the context of innovations proceeded in examining the different perceptions of the key groups involved, farmers and potential end users. Results indicated that biomass exploitation for energy purposes is more likely to be accepted when it is seen clearly as one strand in a national energy, environmental and agricultural policy which embraces several sources of renewable energy, and which also encourages energy efficiency and conservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Faced with a future of rising energy costs there is a need for industry to manage energy more carefully in order to meet its economic objectives. A problem besetting the growth of energy conservation in the UK is that a large proportion of energy consumption is used in a low intensive manner in organisations where they would be responsibility for energy efficiency is spread over a large number of personnel who each see only small energy costs. In relation to this problem in the non-energy intensive industrial sector, an application of an energy management technique known as monitoring and targeting (M & T) has been installed at the Whetstone site of the General Electric Company Limited in an attempt to prove it as a means for motivating line management and personnel to save energy. The objective energy saving for which the M & T was devised is very specific. During early energy conservation work at the site there had been a change from continuous to intermittent heating but the maintenance of the strategy was receiving a poor level of commitment from line management and performance was some 5% - 10% less than expected. The M & T is concerned therefore with heat for space heating for which a heat metering system was required. Metering of the site high pressure hot water system posed technical difficulties and expenditure was also limited. This led to a ‘tin-house' design being installed for a price less than the commercial equivalent. The timespan of work to achieve an operational heat metering system was 3 years which meant that energy saving results from the scheme were not observed during the study. If successful the replication potential is the larger non energy intensive sites from which some 30 PT savings could be expected in the UK.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Project arose during a period in which the World was still coming to terms with the effects and implications of the so called 'energy crisis' of 1973/74. Serck Heat Transfer is a manufacturer of heat exchangers which transfer heat between fluids of various sorts. As such the company felt that past and possible future changes in the energy situation could have an impact upon the demand for its products. The thesis represents the first attempt to examine the impact of changes in the energy situation (a major economic variable) on the long term demand for heat exchangers. The scope of the work was limited to the United Kingdom, this being the largest single market for Serek's products. The thesis analyses industrial heat exchanger markets and identifies those trends which are related to both the changing energy situation and the usage of heat exchangers. These trends have been interpreted In terms of projected values of heat exchanger demand. The projections cover the period 197S to the year 2000. Also examined in the thesis is the future energy situation both internationally and nationally and it is found that in the long term there will be increasing pressure on consumers to conserve energy through rising real prices. The possibility of a connection between energy consumption and heat exchanger demand is investigated and no significant correlation found. This appears to be because there are a number of determinants of demand besides energy related factors and also there is a wide diversity of individual markets for heat exchangers. Conclusions are that in all markets, bar one, the changing energy situation should lead to a higher level of heat exchanger demand than would otherwise be the case had the energy situation not changed. It is also pointed out that it is misleading to look at changes in one influence on the demand for a product and ignore others.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the modelling of drying processes for the promotion of market-led Demand Side Management (DSM) as applied to the UK Public Electricity Suppliers. A review of DSM in the electricity supply industry is provided, together with a discussion of the relevant drivers supporting market-led DSM and energy services (ES). The potential opportunities for ES in a fully deregulated energy market are outlined. It is suggested that targeted industrial sector energy efficiency schemes offer significant opportunity for long term customer and supplier benefit. On a process level, industrial drying is highlighted as offering significant scope for the application of energy services. Drying is an energy-intensive process used widely throughout industry. The results of an energy survey suggest that 17.7 per cent of total UK industrial energy use derives from drying processes. Comparison with published work indicates that energy use for drying shows an increasing trend against a background of reducing overall industrial energy use. Airless drying is highlighted as offering potential energy saving and production benefits to industry. To this end, a comprehensive review of the novel airless drying technology and its background theory is made. Advantages and disadvantages of airless operation are defined and the limited market penetration of airless drying is identified, as are the key opportunities for energy saving. Limited literature has been found which details the modelling of energy use for airless drying. A review of drying theory and previous modelling work is made in an attempt to model energy consumption for drying processes. The history of drying models is presented as well as a discussion of the different approaches taken and their relative merits. The viability of deriving energy use from empirical drying data is examined. Adaptive neuro fuzzy inference systems (ANFIS) are successfully applied to the modelling of drying rates for 3 drying technologies, namely convective air, heat pump and airless drying. The ANFIS systems are then integrated into a novel energy services model for the prediction of relative drying times, energy cost and atmospheric carbon dioxide emission levels. The author believes that this work constitutes the first to use fuzzy systems for the modelling of drying performance as an energy services approach to DSM. To gain an insight into the 'real world' use of energy for drying, this thesis presents a unique first-order energy audit of every ceramic sanitaryware manufacturing site in the UK. Previously unknown patterns of energy use are highlighted. Supplementary comments on the timing and use of drying systems are also made. The limitations of such large scope energy surveys are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drying is an important unit operation in process industry. Results have suggested that the energy used for drying has increased from 12% in 1978 to 18% of the total energy used in 1990. A literature survey of previous studies regarding overall drying energy consumption has demonstrated that there is little continuity of methods and energy trends could not be established. In the ceramics, timber and paper industrial sectors specific energy consumption and energy trends have been investigated by auditing drying equipment. Ceramic products examined have included tableware, tiles, sanitaryware, electrical ceramics, plasterboard, refractories, bricks and abrasives. Data from industry has shown that drying energy has not varied significantly in the ceramics sector over the last decade, representing about 31% of the total energy consumed. Information from the timber industry has established that radical changes have occurred over the last 20 years, both in terms of equipment and energy utilisation. The energy efficiency of hardwood drying has improved by 15% since the 1970s, although no significant savings have been realised for softwood. A survey estimating the energy efficiency and operating characteristics of 192 paper dryer sections has been conducted. Drying energy was found to increase to nearly 60% of the total energy used in the early 1980s, but has fallen over the last decade, representing 23% of the total in 1993. These results have demonstrated that effective energy saving measures, such as improved pressing and heat recovery, have been successfully implemented since the 1970s. Artificial neural networks have successfully been applied to model process characteristics of microwave and convective drying of paper coated gypsum cove. Parameters modelled have included product moisture loss, core gypsum temperature and quality factors relating to paper burning and bubbling defects. Evaluation of thermal and dielectric properties have highlighted gypsum's heat sensitive characteristics in convective and electromagnetic regimes. Modelling experimental data has shown that the networks were capable of simulating drying process characteristics to a high degree of accuracy. Product weight and temperature were predicted to within 0.5% and 5C of the target data respectively. Furthermore, it was demonstrated that the underlying properties of the data could be predicted through a high level of input noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that electron-phonon coupling strongly affects transport properties of the Luttinger liquid hybridized with a resonant level. Namely, this coupling significantly modifies the effective energy-dependent width of the resonant level in two different geometries, corresponding to the resonant or antiresonant transmission in the Fermi gas. This leads to a rich phase diagram for a metal-insulator transition induced by the hybridization with the resonant level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied low-temperature properties of interacting electrons in a one-dimensional quantum wire (Luttinger liquid) side-hybridized with a single-level impurity. The hybridization induces a backscattering of electrons in the wire which strongly affects its low-energy properties. Using a one-loop renormalization group approach valid for a weak electron-electron interaction, we have calculated a transmission coefficient through the wire, T(epsilon), and a local density of states, nu(epsilon) at low energies epsilon. In particular, we have found that the antiresonance in T(epsilon) has a generalized Breit-Wigner shape with the effective width Gamma(epsilon) which diverges at the Fermi level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)1-(x+y), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Qmax = 28 Å-1) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and PO bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. © 2013 The Owner Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The paper aims to design and prove the concept of micro-industry using trigeneration fuelled by biomass, for sustainable development in rural NW India. Design/methodology/approach: This is being tested at village Malunga, near Jodhpur in Rajasthan. The system components comprise burning of waste biomass for steam generation and its use for power generation, cooling system for fruit ripening and the use of steam for producing distilled water. Site was selected taking into account the local economic and social needs, biomass resources available from agricultural activities, and the presence of a NGO which is competent to facilitate running of the enterprise. The trigeneration system was designed to integrate off-the-shelf equipment for power generation using boilers of approximate total capacity 1 tonne of fuel per hour, and a back-pressure steam turbo-generator (200 kW). Cooling is provided by a vapour absorption machine (VAM). Findings: The financial analysis indicates a payback time of less than two years. Nevertheless, this is sensitive to market fluctuations and availabilities of raw materials. Originality/value: Although comparable trigeneration systems already exist in large food processing industries and in space heating and cooling applications, they have not previously been used for rural micro-industry. The small-scale (1-2 m3/h output) multiple effect distillation (3 effect plus condenser) unit has not previously been deployed at field level. © Emerald Group Publishing Limited.