20 resultados para Energy consumption.
em Aston University Research Archive
Resumo:
Ad hoc wireless sensor networks (WSNs) are formed from self-organising configurations of distributed, energy constrained, autonomous sensor nodes. The service lifetime of such sensor nodes depends on the power supply and the energy consumption, which is typically dominated by the communication subsystem. One of the key challenges in unlocking the potential of such data gathering sensor networks is conserving energy so as to maximize their post deployment active lifetime. This thesis described the research carried on the continual development of the novel energy efficient Optimised grids algorithm that increases the WSNs lifetime and improves on the QoS parameters yielding higher throughput, lower latency and jitter for next generation of WSNs. Based on the range and traffic relationship the novel Optimised grids algorithm provides a robust traffic dependent energy efficient grid size that minimises the cluster head energy consumption in each grid and balances the energy use throughout the network. Efficient spatial reusability allows the novel Optimised grids algorithm improves on network QoS parameters. The most important advantage of this model is that it can be applied to all one and two dimensional traffic scenarios where the traffic load may fluctuate due to sensor activities. During traffic fluctuations the novel Optimised grids algorithm can be used to re-optimise the wireless sensor network to bring further benefits in energy reduction and improvement in QoS parameters. As the idle energy becomes dominant at lower traffic loads, the new Sleep Optimised grids model incorporates the sleep energy and idle energy duty cycles that can be implemented to achieve further network lifetime gains in all wireless sensor network models. Another key advantage of the novel Optimised grids algorithm is that it can be implemented with existing energy saving protocols like GAF, LEACH, SMAC and TMAC to further enhance the network lifetimes and improve on QoS parameters. The novel Optimised grids algorithm does not interfere with these protocols, but creates an overlay to optimise the grids sizes and hence transmission range of wireless sensor nodes.
Resumo:
The objective of this paper is to combine the antenna downtilt selection with the cell size selection in order to reduce the overall radio frequency (RF) transmission power in the homogeneous High-Speed Packet Downlink (HSDPA) cellular radio access network (RAN). The analysis is based on the concept of small cells deployment. The energy consumption ratio (ECR) and the energy reduction gain (ERG) of the cellular RAN are calculated for different antenna tilts when the cell size is being reduced for a given user density and service area. The results have shown that a suitable antenna tilt and the RF power setting can achieve an overall energy reduction of up to 82.56%. Equally, our results demonstrate that a small cell deployment can considerably reduce the overall energy consumption of a cellular network.
Resumo:
Shropshire Energy Team initiated this study to examine consumption and associated emissions in the predominantly rural county of Shropshire. Current use of energy is not sustainable in the long term and there are various approaches to dealing with the environmental problems it creates. Energy planning by a local authority for a sustainable future requires detailed energy consumption and environmental information. This information would enable target setting and the implementation of policies designed to encourage energy efficiency improvements and exploitation of renewable energy resources. This could aid regeneration strategies by providing new employment opportunities. Associated reductions in carbon dioxide and other emissions would help to meet national and international environmental targets. In the absence of this detailed information, the objective was to develop a methodology to assess energy consumption and emissions on a regional basis from 1990 onwards for all local planning authorities. This would enable a more accurate assessment of the relevant issues, such that plans are more appropriate and longer lasting. A first comprehensive set of data has been gathered from a wide range of sources and a strong correlation was found between population and energy consumption for a variety of regions across the UK. In this case the methodology was applied to the county of Shropshire to give, for the first time, estimates of primary fuel consumption, electricity consumption and associated emissions in Shropshire for 1990 to 2025. The estimates provide a suitable baseline for assessing the potential contribution renewable energy could play in meeting electricity demand in the country and in reducing emissions. The assessment indicated that in 1990 total primary fuel consumption was 63,518,018 GJ/y increasing to 119,956,465 GJ/y by 2025. This is associated with emissions of 1,129,626 t/y of carbon in 1990 rising to 1,303,282 t/y by 2025. In 1990, 22,565,713 GJ/y of the primary fuel consumption was used for generating electricity rising to 23,478,050 GJ/y in 2025. If targets to reduce primary fuel consumption are reached, then emissions of carbon would fall to 1,042,626 by 2025, if renewable energy targets were also reached then emissions of carbon would fall to 988,638 t/y by 2025.
Resumo:
Faced with a future of rising energy costs there is a need for industry to manage energy more carefully in order to meet its economic objectives. A problem besetting the growth of energy conservation in the UK is that a large proportion of energy consumption is used in a low intensive manner in organisations where they would be responsibility for energy efficiency is spread over a large number of personnel who each see only small energy costs. In relation to this problem in the non-energy intensive industrial sector, an application of an energy management technique known as monitoring and targeting (M & T) has been installed at the Whetstone site of the General Electric Company Limited in an attempt to prove it as a means for motivating line management and personnel to save energy. The objective energy saving for which the M & T was devised is very specific. During early energy conservation work at the site there had been a change from continuous to intermittent heating but the maintenance of the strategy was receiving a poor level of commitment from line management and performance was some 5% - 10% less than expected. The M & T is concerned therefore with heat for space heating for which a heat metering system was required. Metering of the site high pressure hot water system posed technical difficulties and expenditure was also limited. This led to a ‘tin-house' design being installed for a price less than the commercial equivalent. The timespan of work to achieve an operational heat metering system was 3 years which meant that energy saving results from the scheme were not observed during the study. If successful the replication potential is the larger non energy intensive sites from which some 30 PT savings could be expected in the UK.
Resumo:
The Project arose during a period in which the World was still coming to terms with the effects and implications of the so called 'energy crisis' of 1973/74. Serck Heat Transfer is a manufacturer of heat exchangers which transfer heat between fluids of various sorts. As such the company felt that past and possible future changes in the energy situation could have an impact upon the demand for its products. The thesis represents the first attempt to examine the impact of changes in the energy situation (a major economic variable) on the long term demand for heat exchangers. The scope of the work was limited to the United Kingdom, this being the largest single market for Serek's products. The thesis analyses industrial heat exchanger markets and identifies those trends which are related to both the changing energy situation and the usage of heat exchangers. These trends have been interpreted In terms of projected values of heat exchanger demand. The projections cover the period 197S to the year 2000. Also examined in the thesis is the future energy situation both internationally and nationally and it is found that in the long term there will be increasing pressure on consumers to conserve energy through rising real prices. The possibility of a connection between energy consumption and heat exchanger demand is investigated and no significant correlation found. This appears to be because there are a number of determinants of demand besides energy related factors and also there is a wide diversity of individual markets for heat exchangers. Conclusions are that in all markets, bar one, the changing energy situation should lead to a higher level of heat exchanger demand than would otherwise be the case had the energy situation not changed. It is also pointed out that it is misleading to look at changes in one influence on the demand for a product and ignore others.
Resumo:
This thesis investigates the modelling of drying processes for the promotion of market-led Demand Side Management (DSM) as applied to the UK Public Electricity Suppliers. A review of DSM in the electricity supply industry is provided, together with a discussion of the relevant drivers supporting market-led DSM and energy services (ES). The potential opportunities for ES in a fully deregulated energy market are outlined. It is suggested that targeted industrial sector energy efficiency schemes offer significant opportunity for long term customer and supplier benefit. On a process level, industrial drying is highlighted as offering significant scope for the application of energy services. Drying is an energy-intensive process used widely throughout industry. The results of an energy survey suggest that 17.7 per cent of total UK industrial energy use derives from drying processes. Comparison with published work indicates that energy use for drying shows an increasing trend against a background of reducing overall industrial energy use. Airless drying is highlighted as offering potential energy saving and production benefits to industry. To this end, a comprehensive review of the novel airless drying technology and its background theory is made. Advantages and disadvantages of airless operation are defined and the limited market penetration of airless drying is identified, as are the key opportunities for energy saving. Limited literature has been found which details the modelling of energy use for airless drying. A review of drying theory and previous modelling work is made in an attempt to model energy consumption for drying processes. The history of drying models is presented as well as a discussion of the different approaches taken and their relative merits. The viability of deriving energy use from empirical drying data is examined. Adaptive neuro fuzzy inference systems (ANFIS) are successfully applied to the modelling of drying rates for 3 drying technologies, namely convective air, heat pump and airless drying. The ANFIS systems are then integrated into a novel energy services model for the prediction of relative drying times, energy cost and atmospheric carbon dioxide emission levels. The author believes that this work constitutes the first to use fuzzy systems for the modelling of drying performance as an energy services approach to DSM. To gain an insight into the 'real world' use of energy for drying, this thesis presents a unique first-order energy audit of every ceramic sanitaryware manufacturing site in the UK. Previously unknown patterns of energy use are highlighted. Supplementary comments on the timing and use of drying systems are also made. The limitations of such large scope energy surveys are discussed.
Resumo:
Drying is an important unit operation in process industry. Results have suggested that the energy used for drying has increased from 12% in 1978 to 18% of the total energy used in 1990. A literature survey of previous studies regarding overall drying energy consumption has demonstrated that there is little continuity of methods and energy trends could not be established. In the ceramics, timber and paper industrial sectors specific energy consumption and energy trends have been investigated by auditing drying equipment. Ceramic products examined have included tableware, tiles, sanitaryware, electrical ceramics, plasterboard, refractories, bricks and abrasives. Data from industry has shown that drying energy has not varied significantly in the ceramics sector over the last decade, representing about 31% of the total energy consumed. Information from the timber industry has established that radical changes have occurred over the last 20 years, both in terms of equipment and energy utilisation. The energy efficiency of hardwood drying has improved by 15% since the 1970s, although no significant savings have been realised for softwood. A survey estimating the energy efficiency and operating characteristics of 192 paper dryer sections has been conducted. Drying energy was found to increase to nearly 60% of the total energy used in the early 1980s, but has fallen over the last decade, representing 23% of the total in 1993. These results have demonstrated that effective energy saving measures, such as improved pressing and heat recovery, have been successfully implemented since the 1970s. Artificial neural networks have successfully been applied to model process characteristics of microwave and convective drying of paper coated gypsum cove. Parameters modelled have included product moisture loss, core gypsum temperature and quality factors relating to paper burning and bubbling defects. Evaluation of thermal and dielectric properties have highlighted gypsum's heat sensitive characteristics in convective and electromagnetic regimes. Modelling experimental data has shown that the networks were capable of simulating drying process characteristics to a high degree of accuracy. Product weight and temperature were predicted to within 0.5% and 5C of the target data respectively. Furthermore, it was demonstrated that the underlying properties of the data could be predicted through a high level of input noise.
Resumo:
Energy consumption in wireless networks, and in particular in cellular mobile networks, is now of major concern in respect of their potential adverse impact upon the environment and their escalating operating energy costs. The recent phenomenal growth of data services in cellular mobile networks has exacerbated the energy consumption issue and is forcing researchers to address how to design future wireless networks that take into account energy consumption constraints. One fundamental approach to reduce energy consumption of wireless networks is to adopt new radio access architectures and radio techniques. The Mobile VCE (MVCE) Green Radio project, established in 2009, is considering such new architectural and technical approaches. This paper reports highlights the key research issues pursued in the MVCE Green Radio project.
Resumo:
The energy consumption and the energy efficiency have become very important issue in optimizing the current as well as in designing the future telecommunications networks. The energy and power metrics are being introduced in order to enable assessment and comparison of the energy consumption and power efficiency of the telecommunications networks and other transmission equipment. The standardization of the energy and power metrics is a significant ongoing activity aiming to define the baseline energy and power metrics for the telecommunications systems. This article provides an up-to-date overview of the energy and power metrics being proposed by the various standardization bodies and subsequently adopted worldwide by the equipment manufacturers and the network operators. © Institut Télécom and Springer-Verlag 2012.and Springer-Verlag 2012.
Resumo:
In this paper new architectural approaches that improve the energy efficiency of a cellular radio access network (RAN) are investigated. The aim of the paper is to characterize both the energy consumption ratio (ECR) and the energy consumption gain (ECG) of a cellular RAN when the cell size is reduced for a given user density and service area. The paper affirms that reducing the cell size reduces the cell ECR as desired while increasing the capacity density but the overall RAN energy consumption remains unchanged. In order to trade the increase in capacity density with RAN energy consumption, without degrading the cell capacity provision, a sleep mode is introduced. In sleep mode, cells without active users are powered-off, thereby saving energy. By combining a sleep mode with a small-cell deployment architecture, the paper shows that the ECG can be increased by the factor n = (R/R) while the cell ECR continues to decrease with decreasing cell size.
Resumo:
It is desirable that energy performance improvement is not realized at the expense of other network performance parameters. This paper investigates the trade off between energy efficiency, spectral efficiency and user QoS performance for a multi-cell multi-user radio access network. Specifically, the energy consumption ratio (ECR) and the spectral efficiency of several common frequency domain packet schedulers in a cellular E-UTRAN downlink are compared for both the SISO transmission mode and the 2x2 Alamouti Space Frequency Block Code (SFBC) MIMO transmission mode. It is well known that the 2x2 SFBC MIMO transmission mode is more spectrally efficient compared to the SISO transmission mode, however, the relationship between energy efficiency and spectral efficiency is undecided. It is shown that, for the E-UTRAN downlink with fixed transmission power, spectral efficiency improvement results into energy efficiency improvement. The effect of SFBC MIMO versus SISO on the user QoS performance is also studied. © 2011 IEEE.
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.
Resumo:
Grape is one of the world's largest fruit crops with approximately 67.5 million tonnes produced each year and energy is an important element in modern grape productions as it heavily depends on fossil and other energy resources. Efficient use of these energies is a necessary step toward reducing environmental hazards, preventing destruction of natural resources and ensuring agricultural sustainability. Hence, identifying excessive use of energy as well as reducing energy resources is the main focus of this paper to optimize energy consumption in grape production.In this study we use a two-stage methodology to find the association of energy efficiency and performance explained by farmers' specific characteristics. In the first stage a non-parametric Data Envelopment Analysis is used to model efficiencies as an explicit function of human labor, machinery, chemicals, FYM (farmyard manure), diesel fuel, electricity and water for irrigation energies. In the second step, farm specific variables such as farmers' age, gender, level of education and agricultural experience are used in a Tobit regression framework to explain how these factors influence efficiency of grape farming.The result of the first stage shows substantial inefficiency between the grape producers in the studied area while the second stage shows that the main difference between efficient and inefficient farmers was in the use of chemicals, diesel fuel and water for irrigation. The use of chemicals such as insecticides, herbicides and fungicides were considerably less than inefficient ones. The results revealed that the more educated farmers are more energy efficient in comparison with their less educated counterparts. © 2013.
Resumo:
Distributed source coding (DSC) has recently been considered as an efficient approach to data compression in wireless sensor networks (WSN). Using this coding method multiple sensor nodes compress their correlated observations without inter-node communications. Therefore energy and bandwidth can be efficiently saved. In this paper, we investigate a randombinning based DSC scheme for remote source estimation in WSN and its performance of estimated signal to distortion ratio (SDR). With the introduction of a detailed power consumption model for wireless sensor communications, we quantitatively analyze the overall network energy consumption of the DSC scheme. We further propose a novel energy-aware transmission protocol for the DSC scheme, which flexibly optimizes the DSC performance in terms of either SDR or energy consumption, by adapting the source coding and transmission parameters to the network conditions. Simulations validate the energy efficiency of the proposed adaptive transmission protocol. © 2007 IEEE.
Resumo:
For remote, semi-arid areas, brackish groundwater (BW) desalination powered by solar energy may serve as the most technically and economically viable means to alleviate the water stresses. For such systems, high recovery ratio is desired because of the technical and economical difficulties of concentrate management. It has been demonstrated that the current, conventional solar reverse osmosis (RO) desalination can be improved by 40–200 times by eliminating unnecessary energy losses. In this work, a batch-RO system that can be powered by a thermal Rankine cycle has been developed. By directly recycling high pressure concentrates and by using a linkage connection to provide increasing feed pressures, the batch-RO has been shown to achieve a 70% saving in energy consumption compared to a continuous single-stage RO system. Theoretical investigations on the mass transfer phenomena, including dispersion and concentration polarization, have been carried out to complement and to guide experimental efforts. The performance evaluation of the batch-RO system, named DesaLink, has been based on extensive experimental tests performed upon it. Operating DesaLink using compressed air as power supply under laboratory conditions, a freshwater production of approximately 300 litres per day was recorded with a concentration of around 350 ppm, whilst the feed water had a concentration range of 2500–4500 ppm; the corresponding linkage efficiency was around 40%. In the computational aspect, simulation models have been developed and validated for each of the subsystems of DesaLink, upon which an integrated model has been realised for the whole system. The models, both the subsystem ones and the integrated one, have been demonstrated to predict accurately the system performance under specific operational conditions. A simulation case study has been performed using the developed model. Simulation results indicate that the system can be expected to achieve a water production of 200 m3 per year by using a widely available evacuated tube solar collector having an area of only 2 m2. This freshwater production would satisfy the drinking water needs of 163 habitants in the Rajasthan region, the area for which the case study was performed.