5 resultados para Endodontic cements
em Aston University Research Archive
Resumo:
It has been previously established that alkali silica reaction (ASR) in concrete may be controlled by blending Portland cement with suitable hydraulic or pozzolanic materials. The controlling mechanism has been attributed to the dilution of the cement's alkali content and reduced mobility of ions in concrete's pore solution. In this project an attempt has been made to identify the factors which influence the relative importance of each mechanism in the overall suppression of the reaction by the use of blended cements. The relationship between the pore solution alkalinity and ASR was explored by the use of expansive mortar bars submerged in alkaline solutions of varying concentration. This technique enabled the blended cement's control over expansion to be assessed at given `pore solution' alkali concentrations. It was established that the cement blend, the concentration and quantity of alkali present in the pore solution were the factors which determined the rate and extent of ASR. The release of alkalis into solution by Portland cements of various alkali content was studied by analysis of pore solution samples expressed from mature specimens. The specification for avoiding ASR by alkali limitation, both by alkali content of cement and the total quantity of alkali were considered. The effect on the pore solution alkalinity when a range of Portland cements were blended with various replacement materials was measured. It was found that the relationship between the type of replacement material, its alkali content and that of the cement were the factors which primarily determined the extent of the pore solution alkali dilution effect. It was confirmed that salts of alkali metals of the kinds found as common concrete contaminants were able to increase the pore solution hydroxyl ion concentration significantly. The increase was limited by the finite anion complexing ability of the cement.
Resumo:
Widespread use of glass fibre reinforced cement (GRC) has been impeded by concerns over its durability. Three degradation mechanisms are proposed - fibre corrosion, Ca(OHh precipitation and matrix densification - although their relative importance is debated. Matrices with reduced alkalinities and Ca(OH)2 contents are being developed; the aim of this study was to investigate their hydration and interaction with alkali-resistant fibres to determine the factors controlling their long-term durability, and assess the relevancy of accelerated ageing. The matrices studied were: OPC/calcium-sulphoaluminate cement plus metakaolin (C); OPC plus metakaolin (M); blast-furnace slag cement plus a micro-silica based additive (D); and OPC (O). Accelerated ageing included hot water and cyclic regimes prior to tensile testing. Investigations included pore solution expression, XRD, DTA/TG, SEM and optical petrography. Bond strength was determined from crack spacings using microstructural parameters obtained from a unique image analysis technique. It was found that, for the new matrices - pore solution alkalinities were lower; Ca(OH)2 was absent or quickly consumed; different hydrates were formed at higher immersion temperatures; degradation under 65°C immersion was an order of magnitude slower, and no interfilamental Ca(OH)2 was observed .It was concluded that: fibre weakening caused by flaw growth was the primary degradation mechanism and was successfully modelled on stress corrosion/static fatigue principles. OPC inferiority was attributed partly to its higher alkalinity but chiefly to the growth of Ca(OH)2 aggravating the degradation; and hot water ageing although useful in model formulation and contrasting the matrices, changed the intrinsic nature of the composites rather than simply accelerating the degradation mechanisms.
Resumo:
Blended Portland-blastfumace slag cements provide a suitable matrix for the encapsulation of low and intermediate level waste due to their inherantly low connective porosity and provide a highly alkaline and strongly reduced chemical environment. The hydration mechanism of these materials is complex and involves several competing chemical reactions. This thesis investigates three main areas: 1) The developing chemical shrinkage of the system shows that the underlying kinetics are dominantly linear and estimates of the activation energy of the slag made by this method and by conduction calorimetry show it to be c.53 kJ/mol. 2) Examination of the soUd phase reveals that caldum hydroxide is initially precipitated and subsequently consumed during hydration. The absolute rate of slag hydration is investigated by chemical and thermal methods and an estimation of the average silicate chain length (3 silicate units) by NMR is presented. 3) The developing pore solution chemistry shows that the system becomes rapidly alkaline (pH 13 - 13.5) and subsequently strongly reduced. Ion chromatography shows the presence of reduced sulphur species which are associated with the onset of reducing conditions. In the above studies, close control of the hydration temperature was maintained and the operation of a temperature controlled pore fluid extration press is reported.
Resumo:
The nature and kinetics of electrode reactions and processes occurring for four lightweight anode systems which have been utilised in reinforced concrete cathodic protection systems have been studied. The anodes investigated were flame sprayed zinc, conductive paint and two activated titanium meshes. The electrochemical properties of each material were investigated in rapidly stirred de-oxygenated electrolytes using anodic potentiodynamic polarisation. Conductive coating electrodes were formed on glass microscope slides, whilst mesh strands were immersed directly. Oxygen evolution occurred preferentially for both mesh anodes in saturated Ca (OH)2/CaC12 solutions but was severely inhibited in less alkaline solutions and significant current only passed in chloride solutions. The main reactions for conductive paint was based on oxygen evolution in all electrolytes, although chlorides increased the electrical activity. Self-corrosion of zinc was controlled by electrolyte composition and the experimental set-up, chlorides increasing the electrical activity. Impressed current cathodic protection was applied to 25 externally exposed concrete slabs over a period of 18 months to investigate anode degradation mechanisms at normal and high current densities. Specimen chloride content, curing and reinforcement depth were also variables. Several destructive and non-destructive methods for assessing the performance of anodes were evaluated including a site instrument for quantitative "instant-off- potential measurements. The impact of cathodic protection on the concrete substrate was determined for a number of specimens using appropriate methods. Anodic degradation rates were primarily influenced by current density, followed by cemendtious alkalinity, chloride levels and by current distribution. Degradation of cementitious overlays and conductive paint substrates proceeded by sequential neutralisation of cement phases, with some evidence of paint binder oxidation. Sprayed zinc progressively formed an insulating layer of hydroxide complexes, which underwent pitting_ attack in the presence of sufficient chlorides, whilst substrate degradation was minimal. Adhesion of all anode systems decreased with increasing current density. The influence of anode material on the ionic gradients which can develop during cathodic protection was investigated. A constant current was passed through saturated cement paste prisms containing calcium chloride to central cathodes via anodes applied or embedded at each end. Pore solution was obtained from successive cut paste slices for anion and cation analyses. Various experimental errors reduced the value of the results. Characteristic S-shaped profiles were not observed and chloride ion profiles were ambiguous. Mesh anode specimens were significantly more durable than the conductive coatings in the high humidity environment. Limited results suggested zinc ion migration to the cathode region. Electrical data from each investigation clearly indicated a decreasing order of anode efficiency by specific anode material.
Resumo:
Polymer modified cements and mortars have become popular for use as patch repair materials. General evidence suggests that these materials offer considerable improvements compared to traditional mortars although the mechanisms for this are not fully understood. This work elucidates the factors which govern some properties and performance of different polymer systems. In view of the wide range of commercial systems available, investigations concentrated on the use of three of the most commonly available groups of polymers. These were: (1) Styrene Butadiene Rubber (SBR), (2) Acrylics and, (3) Ethylene Vinyl Acetates (EVA). The later two were in the form of both emulsions and redispersible powders. Experiments concentrated on: (1) Rheological behaviour of polymer modified cement pastes; (2) Workability of polymer modified mortars; (3) Influence of curing conditions on the pore size distribution and diffusion of chloride ions; (4) Bond strength of polymer modified cement and mortar patches; and (5) Microscopic examination and semi-quantitative analyses of the bulk and interfacial microstructures. The following main conclusions were reached: (1) The addition of polymer emulsions have a considerable influence on the workability of fresh cement pastes, the extent of this depending on the type of system used. (2) The rheological parameters of fresh polymer modified mortars can be established using a two-point workability test which may be used when comparing the properties of different systems at constant workability. (3) Curing conditions affect the properties of polymer modified systems and a wet/dry curing regime was essential for good adhesion of these materials to mortar substrates. (4) In contrast, the wet/dry curing regime resulted in a curing affected zone at the surface of patch materials. This can result in a much coarser pore structure and enhanced diffusion of e.g. chloride ions. (5) The microstructure of polymer modified systems was very different compared with the unmodified cement/mortar and varied depending on curing conditions.