3 resultados para Encéphalomyélite auto-immune expérimentale
em Aston University Research Archive
Resumo:
For the immune system to function effectively, the body must be able to distinguish foreign antigens from self-antigens. However, the mechanisms which maintain this distinction may break down and result in auto-immune disease in which self-reacting antibodies and T-cells are produced. This article discusses first, the evidence for the existence of human auto-immune disease and second, the auto-immune diseases which have characteristic ocular symptoms.
Resumo:
For the immune system to function effectively, the body must be able to distinguish foreign antigens from self antigens. However, the mechanisms which maintain this distinction may break down and result in an auto-immune disease in which self-reacting antibodies and T-cells are produced. This article discusses first, the evidence for the existence of human auto-immune disease and second, the auto-immune diseases which have characteristic ocular symptoms.
Resumo:
Cells undergoing apoptosis in vivo are rapidly detected and cleared by phagocytes. Swift recognition and removal of apoptotic cells is important for normal tissue homeostasis and failure in the underlying clearance mechanisms has pathological consequences associated with inflammatory and auto-immune diseases. Cell cultures in vitro usually lack the capacity for removal of non-viable cells because of the absence of phagocytes and, as such, fail to emulate the healthy in vivo micro-environment from which dead cells are absent. While a key objective in cell culture is to maintain viability at maximal levels, cell death is unavoidable and non-viable cells frequently contaminate cultures in significant numbers. Here we show that the presence of apoptotic cells in monoclonal antibody-producing hybridoma cultures has markedly detrimental effects on antibody productivity. Removal of apoptotic hybridoma cells by macrophages at the time of seeding resulted in 100% improved antibody productivity that was, surprisingly to us, most pronounced late on in the cultures. Furthermore, we were able to recapitulate this effect using novel super-paramagnetic Dead-Cert Nanoparticles to remove non-viable cells simply and effectively at culture seeding. These results (1) provide direct evidence that apoptotic cells have a profound influence on their non-phagocytic neighbors in culture and (2) demonstrate the effectiveness of a simple dead-cell removal strategy for improving antibody manufacture in vitro.