2 resultados para Emodialisi Sensori Conducibilità

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both animal and human studies suggest that the efficiency with which we are able to grasp objects is attributable to a repertoire of motor signals derived directly from vision. This is in general agreement with the long-held belief that the automatic generation of motor signals by the perception of objects is based on the actions they afford. In this study, we used magnetoencephalography (MEG) to determine the spatial distribution and temporal dynamics of brain regions activated during passive viewing of object and non-object targets that varied in the extent to which they afforded a grasping action. Synthetic Aperture Magnetometry (SAM) was used to localize task-related oscillatory power changes within specific frequency bands, and the time course of activity within given regions-of-interest was determined by calculating time-frequency plots using a Morlet wavelet transform. Both single subject and group-averaged data on the spatial distribution of brain activity are presented. We show that: (i) significant reductions in 10-25 Hz activity within extrastriate cortex, occipito-temporal cortex, sensori-motor cortex and cerebellum were evident with passive viewing of both objects and non-objects; and (ii) reductions in oscillatory activity within the posterior part of the superior parietal cortex (area Ba7) were only evident with the perception of objects. Assuming that focal reductions in low-frequency oscillations (< 30 Hz) reflect areas of heightened neural activity, we conclude that: (i) activity within a network of brain areas, including the sensori-motor cortex, is not critically dependent on stimulus type and may reflect general changes in visual attention; and (ii) the posterior part of the superior parietal cortex, area Ba7, is activated preferentially by objects and may play a role in computations related to grasping. © 2006 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis the relationship between visual attention, affordance and action was investigated using a combination of neuroimaging and behavioural studies. Neuronal activity and movement construction were assessed when individuals passively viewed or produced action towards stimuli varying in their affordance and/or attentional attributes. The main findings were: (i) the passive perception of both object and abstract visual patterns was associated with decreased alpha and/or beta activity in sensori-motor cortex, occipito-temporal cortex and cerebellum. These are brain regions associated with the planning and production of visually guided action; (ii) for object patterns, decreased alpha and beta activity was also observed in regions of superior parietal and premotor cortex. These regions contain neurons argued to be essential for matching hand kinematics with manipulate objects; and (iii) in both control participants and a deafferented individual, studies of planned and unplanned pointing manoeuvres revealed that the attentional bias of a stimulus was critical for fast, efficient action production whereas the affordance bias was critical in determining end-point accuracy. Taken together, these findings demonstrate that affordance is not a necessary prerequisite for the potential of motor codes. Rather, affordance enables the construction of motor responses that reflect object functionality and/or manipulability. They further demonstrate that visual attention is associated with the potentiation of motor codes. Indeed, directed visual attention would appear critical for speeded responses. These findings provide new insights into the roles of directed visual attention and affordance upon action.