3 resultados para Embryos and larvae
em Aston University Research Archive
Resumo:
The preimplantation mammalian embryo from different species appears sensitive to the environment in which it develops, either in vitro or in vivo, for example, in response to culture conditions or maternal diet. This sensitivity may lead to long-term alterations in the characteristics of fetal and/or postnatal growth and phenotype, which have implications for clinical health and biotechnological applications. We review the breadth of environmental influences that may affect early embryos and their responses to such conditions along epigenetic, metabolic, cellular, and physiological directions. In addition, we evaluate how embryo environmental responses may influence developmental potential and phenotype during later gestation. We conclude that a complex of different mechanisms may operate to associate early embryo environment with future health.
Resumo:
The periconceptional period, embracing the terminal stages of oocyte growth and post-fertilisation development up to implantation, is sensitive to parental nutrition. Deficiencies or excesses in a range of macro- and micronutrients during this period can lead to impairments in fertility, fetal development and long-term offspring health. Obesity and genotype-related differences in regional adiposity are associated with impaired liver function and insulin resistance, and contribute to fatty acid-mediated impairments in sperm viability and oocyte and embryo quality, all of which are associated with endoplasmic reticulum stress and compromised fertility. Disturbances to maternal protein metabolism can elevate ammonium concentrations in reproductive tissues and disturb embryo and fetal development. Associated with this are disturbances to one-carbon metabolism, which can lead to epigenetic modifications to DNA and associated proteins in offspring that are both insulin resistant and hypertensive. Many enzymes involved in epigenetic gene regulation use metabolic cosubstrates (e.g. acetyl CoA and S-adenosyl methionine) to modify DNA and associated proteins, and so act as 'metabolic sensors' providing a link between parental nutritional status and gene regulation. Separate to their genomic contribution, spermatozoa can also influence embryo development via direct interactions with the egg and by seminal plasma components that act on oviductal and uterine tissues. © IETS 2014.