56 resultados para Eletroencefalografia - EEG
em Aston University Research Archive
Resumo:
Objective: It is investigated to which extent measures of nonlinearity derived from surrogate data analysis are capable to quantify the changes of epileptic activity related to varying vigilance levels. Methods: Surface and intracranial EEG from foramen ovale (FO-)electrodes was recorded from a patient with temporal lobe epilepsy under presurgical evaluation over one night. Different measures of nonlinearity were estimated for non-overlapping 30-s segments for selected channels from surface and intracranial EEG. Additionally spectral measures were calculated. Sleep stages were scored according to Rechtschaffen/Kales and epileptic transients were counted and classified by visual inspection. Results: In the intracranial recordings stronger nonlinearity was found ipsilateral to the epileptogenic focus, more pronounced in NREM sleep, weaker in REM sleep. The dynamics within the NREM episodes varied with the different nonlinearity measures. Some nonlinearity measures showed variations with the sleep cycle also in the intracranial recordings contralateral to the epileptic focus and in the surface EEG. It is shown that the nonlinearity is correlated with short-term fluctuations of the delta power. The higher frequency of occurrence of clinical relevant epileptic spikes in the first NREM episode was not clearly reflected in the nonlinearity measures. Conclusions: It was confirmed that epileptic activity renders the EEG nonlinear. However, it was shown that the sleep dynamics itself also effects the nonlinearity measures. Therefore, at the present stage it is not possible to establish a unique connection between the studied nonlinearity measures and specific types of epileptic activity in sleep EEG recordings.
Resumo:
Relations between spatial attention and motor intention were investigated by means of an EEG potential elicited by shifting attention to a location in space as well as by the selection of a hand for responding. High-density recordings traced this potential to a common frontoparietal network activated by attentional orienting and by response selection. Within this network, parietal and frontal cortex were activated sequentially, followed by an anterior-to-posterior migration of activity culminating in the lateral occipital cortex. Based on temporal and polarity information provided by EEG, we hypothesize that the frontoparietal activation, evoked by directional information, updates a task-defined preparatory state by deselecting or inhibiting the behavioral option competing with the cued response side or the cued direction of attention. These results from human EEG demonstrate a direct EEG manifestation of the frontoparietal attention network previously identified in functional imaging. EEG reveals the time course of activation within this network and elucidates the generation and function of associated directing-attention EEG potentials. The results emphasize transient activation and a decision-related function of the frontoparietal attention network, contrasting with the sustained preparatory activation that is commonly inferred from neuroimaging.
Resumo:
Ambulatory EEG recording enables patients with epilepsy and related disorders to be monitored in an unrestricted environment for prolonged periods. Attacks can therefore be recorded and EEG changes at the time can aid diagnosis. The relevant Iiterature is reviewed and a study made of' 250 clinical investigations. A study was also made of the artefacts,encountered during ambulatory recording. Three quarters of referrals were for distinguishing between epileptic and non-epileptic attacks. Over 60% of patients showed no abnormality during attacks. In comparison with the basic EEG the ambulatory EEG provided about ten times as much information. A preliminary follow-up study showed that results, of ambulatory monitoring agreed with the final diagnosis in 8 of 12 patients studied. Of 10 patients referred, for monitoring the occurrence of absence seizures, 8 showed abnormality during the baslcJ EEG .and 10 during the ambulatory EEG. Other patients. were referred: for sleep recording and to clarify the seizure type. An investigation into once daily (OD) versus twice daily administration of sodium valproate in patients with absence seizures showed that an OD regime was equally as effective as a BD regime. Circadian variations in spike and wave activity in patients on and off treatment were also examined. There was significant agreement between subjects on the time of occurrence of abnormality during sleep only, This pattern was not ,affected with treatment nor was there any difference in the daily pattern of occurrence of abnormality between the two regimes. Overall findings suggested that ambulatory monitoring was a valuable tool in the diagnosis and treatment of epilepsy which with careful planning and patient selection could be used in any EEG department and would benefit a:wide range of patients.
Resumo:
We investigated which evoked response component occurring in the first 800 ms after stimulus presentation was most suitable to be used in a classical P300-based brain-computer interface speller protocol. Data was acquired from 275 Magnetoencephalographic sensors in two subjects and from 61 Electroencephalographic sensors in four. To better characterize the evoked physiological responses and minimize the effect of response overlap, a 1000 ms Inter Stimulus Interval was preferred to the short (
Resumo:
Intermittent photic stimulation (IPS) is a common procedure performed in the electroencephalography (EEG) laboratory in children and adults to detect abnormal epileptogenic sensitivity to flickering light (i.e., photosensitivity). In practice, substantial variability in outcome is anecdotally found due to the many different methods used per laboratory and country. We believe that standardization of procedure, based on scientific and clinical data, should permit reproducible identification and quantification of photosensitivity. We hope that the use of our new algorithm will help in standardizing the IPS procedure, which in turn may more clearly identify and assist monitoring of patients with epilepsy and photosensitivity. Our algorithm goes far beyond that published in 1999 (Epilepsia, 1999a, 40, 75; Neurophysiol Clin, 1999b, 29, 318): it has substantially increased content, detailing technical and logistical aspects of IPS testing and the rationale for many of the steps in the IPS procedure. Furthermore, our latest algorithm incorporates the consensus of repeated scientific meetings of European experts in this field over a period of 6 years with feedback from general neurologists and epileptologists to improve its validity and utility. Accordingly, our European group has provided herein updated algorithms for two different levels of methodology: (1) requirements for defining photosensitivity in patients and in family members of known photosensitive patients and (2) requirements for tailored studies in patients with a clear history of visually induced seizures or complaints, and in those already known to be photosensitive.
Resumo:
Our aim was to identify early predictors of poor neurodevelopmental outcome and of subsequent epilepsy in very early preterm and late preterm newborns with neonatal seizures.
Resumo:
We propose a novel electroencephalographic application of a recently developed cerebral source extraction method (Functional Source Separation, FSS), which starts from extracranial signals and adds a functional constraint to the cost function of a basic independent component analysis model without requiring solutions to be independent. Five ad-hoc functional constraints were used to extract the activity reflecting the temporal sequence of sensory information processing along the somatosensory pathway in response to the separate left and right median nerve galvanic stimulation. Constraints required only the maximization of the responsiveness at specific latencies following sensory stimulation, without taking into account that any frequency or spatial information. After source extraction, the reliability of identified FS was assessed based on the position of single dipoles fitted on its retroprojected signals and on a discrepancy measure. The FS positions were consistent with previously reported data (two early subcortical sources localized in the brain stem and thalamus, the three later sources in cortical areas), leaving negligible residual activity at the corresponding latencies. The high-frequency component of the oscillatory activity (HFO) of the extracted component was analyzed. The integrity of the low amplitude HFOs was preserved for each FS. On the basis of our data, we suggest that FSS can be an effective tool to investigate the HFO behavior of the different neuronal pools, recruited at successive times after median nerve galvanic stimulation. As FSs are reconstructed along the entire experimental session, directional and dynamic HFO synchronization phenomena can be studied.
Resumo:
Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing.
Resumo:
Objective: To investigate the dynamics of communication within the primary somatosensory neuronal network. Methods: Multichannel EEG responses evoked by median nerve stimulation were recorded from six healthy participants. We investigated the directional connectivity of the evoked responses by assessing the Partial Directed Coherence (PDC) among five neuronal nodes (brainstem, thalamus and three in the primary sensorimotor cortex), which had been identified by using the Functional Source Separation (FSS) algorithm. We analyzed directional connectivity separately in the low (1-200. Hz, LF) and high (450-750. Hz, HF) frequency ranges. Results: LF forward connectivity showed peaks at 16, 20, 30 and 50. ms post-stimulus. An estimate of the strength of connectivity was modulated by feedback involving cortical and subcortical nodes. In HF, forward connectivity showed peaks at 20, 30 and 50. ms, with no apparent feedback-related strength changes. Conclusions: In this first non-invasive study in humans, we documented directional connectivity across subcortical and cortical somatosensory pathway, discriminating transmission properties within LF and HF ranges. Significance: The combined use of FSS and PDC in a simple protocol such as median nerve stimulation sheds light on how high and low frequency components of the somatosensory evoked response are functionally interrelated in sustaining somatosensory perception in healthy individuals. Thus, these components may potentially be explored as biomarkers of pathological conditions. © 2012 International Federation of Clinical Neurophysiology.
Resumo:
EEG Hyperscanning is a method for studying two or more individuals simultaneously with the objective of elucidating how co-variations in their neural activity (i.e., hyperconnectivity) are influenced by their behavioral and social interactions. The aim of this study was to compare the performance of different hyper-connectivity measures using (i) simulated data, where the degree of coupling could be systematically manipulated, and (ii) individually recorded human EEG combined into pseudo-pairs of participants where no hyper-connections could exist. With simulated data we found that each of the most widely used measures of hyperconnectivity were biased and detected hyper-connections where none existed. With pseudo-pairs of human data we found spurious hyper-connections that arose because there were genuine similarities between the EEG recorded from different people independently but under the same experimental conditions. Specifically, there were systematic differences between experimental conditions in terms of the rhythmicity of the EEG that were common across participants. As any imbalance between experimental conditions in terms of stimulus presentation or movement may affect the rhythmicity of the EEG, this problem could apply in many hyperscanning contexts. Furthermore, as these spurious hyper-connections reflected real similarities between the EEGs, they were not Type-1 errors that could be overcome by some appropriate statistical control. However, some measures that have not previously been used in hyperconnectivity studies, notably the circular correlation co-efficient (CCorr), were less susceptible to detecting spurious hyper-connections of this type. The reason for this advantage in performance is discussed and the use of the CCorr as an alternative measure of hyperconnectivity is advocated. © 2013 Burgess.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of the logical operators corresponding to right middle frontal gyrus (rMFG-BA11) activation, followed by identification of contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47) activation. Right medial frontal gyrus (rMeFG, BA10) and anterior cingulate cortex (ACC, BA32) contributed to the later stages of process. We observed a correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are more likely to simplify communication. © 2014 Porcaro et al.
Resumo:
Altered state theories of hypnosis posit that a qualitatively distinct state of mental processing, which emerges in those with high hypnotic susceptibility following a hypnotic induction, enables the generation of anomalous experiences in response to specific hypnotic suggestions. If so then such a state should be observable as a discrete pattern of changes to functional connectivity (shared information) between brain regions following a hypnotic induction in high but not low hypnotically susceptible participants. Twenty-eight channel EEG was recorded from 12 high susceptible (highs) and 11 low susceptible (lows) participants with their eyes closed prior to and following a standard hypnotic induction. The EEG was used to provide a measure of functional connectivity using both coherence (COH) and the imaginary component of coherence (iCOH), which is insensitive to the effects of volume conduction. COH and iCOH were calculated between all electrode pairs for the frequency bands: delta (0.1-3.9 Hz), theta (4-7.9 Hz) alpha (8-12.9 Hz), beta1 (13-19.9 Hz), beta2 (20-29.9 Hz) and gamma (30-45 Hz). The results showed that there was an increase in theta iCOH from the pre-hypnosis to hypnosis condition in highs but not lows with a large proportion of significant links being focused on a central-parietal hub. There was also a decrease in beta1 iCOH from the pre-hypnosis to hypnosis condition with a focus on a fronto-central and an occipital hub that was greater in high compared to low susceptibles. There were no significant differences for COH or for spectral band amplitude in any frequency band. The results are interpreted as indicating that the hypnotic induction elicited a qualitative change in the organization of specific control systems within the brain for high as compared to low susceptible participants. This change in the functional organization of neural networks is a plausible indicator of the much theorized "hypnotic-state". © 2014 Jamieson and Burgess.
Resumo:
We examined two subjectively distinct memory states that are elicited during recognition memory in humans and compared them in terms of the gamma oscillations (20–60 Hz) in the electroencepahalogram (EEG) that they induced. These subjective states, ‘recollection’ and ‘familiarity’ both entail correct recognition but one involves a clear and conscious recollection of the event including memory for contextual detail whilst the other involves a sense of familiarity without clear recollection. Here we show that during a verbal recognition memory test, the subjective experience of ‘recollection’ induced higher amplitude gamma oscillations than the subjective experience of ‘familiarity’ in the time period 300–500 ms after stimulus presentation. Recollection, but not familiarity, was also associated with greater functional connectivity in the gamma frequency range between frontal and parietal sites. Furthermore, the magnitude of the gamma functional connectivity varied over time and was modulated at 3 Hz. Previous studies in animals have shown local theta frequency modulation (3–7 Hz) of gamma-oscillations but this is the first time that a similar effect has been reported in the human EEG.
Resumo:
Despite the increasing body of evidence supporting the hypothesis of schizophrenia as a disconnection syndrome, studies of resting-state EEG Source Functional Connectivity (EEG-SFC) in people affected by schizophrenia are sparse. The aim of the present study was to investigate resting-state EEG-SFC in 77 stable, medicated patients with schizophrenia (SCZ) compared to 78 healthy volunteers (HV). In order to study the effect of illness duration, SCZ were divided in those with a short duration of disease (SDD; n = 25) and those with a long duration of disease (LDD; n = 52). Resting-state EEG recordings in eyes closed condition were analyzed and lagged phase synchronization (LPS) indices were calculated for each ROI pair in the source-space EEG data. In delta and theta bands, SCZ had greater EEG-SFC than HV; a higher theta band connectivity in frontal regions was observed in LDD compared with SDD. In the alpha band, SCZ showed lower frontal EEG-SFC compared with HV whereas no differences were found between LDD and SDD. In the beta1 band, SCZ had greater EEG-SFC compared with HVs and in the beta2 band, LDD presented lower frontal and parieto-temporal EEG-SFC compared with HV. In the gamma band, SDD had greater connectivity values compared with LDD and HV. This study suggests that resting state brain network connectivity is abnormally organized in schizophrenia, with different patterns for the different EEG frequency components and that EEG can be a powerful tool to further elucidate the complexity of such disordered connectivity.