13 resultados para Electrospun nanofibers
em Aston University Research Archive
Resumo:
Electrospinng of a fibrous triblock copolymer consisting of poly(methyl methacrylate-block-poly[2-(diethylamino) ethyl methacrylate]-block-poly(methyl methacrylate) (PMMA-b-PDEA-b-PMMA) has been discussed. A mixed co-solvent system of tetrahydrofuran (THF) and dimethylformamide (DMF) was used to electrospin fibrous PMMA-b-PDEA-b-PMMA and its influence on surface morphology and diameter of the electrospun fiber was also investigated in an attempt to control the fiber diameter. The concentration range between 20 and 40 wt % was found suitable for electrospinning of PMMA-b-PDEA-b-PMMA in a THF/DMF system. It was also observed that the average fiber diameter decreased as the content of DMF was increased. A significant decrease in fiber diameter was observed when moving from a THF solution to a THF/DMF system at a ratio of 70:30.
Resumo:
The dielectric behavior of polyacrylonitrile derived carbon nanofibers formed at different carbonization temperatures was investigated using impedance spectroscopy. The impedance data are presented in the form of Cole-Cole plots and four equivalent electrical circuits are derived. It is found that by increasing carbonization temperature from 500 to 800 °C, a strong capacitive element in the parallel equivalent circuit is transformed into an inductive element, while the contact resistance and parallel resistance are significantly decreased. Along with the morphological and chemical structural evolution, respectively witnessed by scanning electron microscopy and Raman spectroscopy, the dielectric transition deduced from the transformation of electrical circuits can be correlated to the proposed microstructural changes of polyacrylonitrile derived carbon nanofibers and the interaction/interference among them.
Resumo:
The basic functional element of microfiber photonics is a microfiber coil resonator (MCR), which potentially can perform filtering, time delay, and nonlinear transformations of electromagnetic waves, as well as sensing of the ambient medium. The first experimental demonstration of an MCR has been recently performed by researchers of the OFS Laboratories (Optical Fiber Communication Conference 2007, Postdeadline paper PDP46). This paper follows up on the later publication presenting a brief introduction to the theory, transmission properties and applications of optical micro/nanofibers and MCRs. Fabrication of MCRs in air and in liquid is reported. For the MCR immersed in liquid, the Q-factor exceeding 60 000 is achieved. © 2008 IEEE.
Resumo:
The basic functional element of microfiber photonics is a microfiber coil resonator (MCR), which potentially can perform filtering, time delay, and nonlinear transformations of electromagnetic waves, as well as sensing of the ambient medium. The first experimental demonstration of an MCR has been recently performed by researchers of the OFS Laboratories (Optical Fiber Communication Conference 2007, Postdeadline paper PDP46). This paper follows up on the later publication presenting a brief introduction to the theory, transmission properties and applications of optical micro/nanofibers and MCRs. Fabrication of MCRs in air and in liquid is reported. For the MCR immersed in liquid, the Q-factor exceeding 60 000 is achieved. © 2008 IEEE.
Resumo:
The purpose of this study was to produce a well-characterised electrospun polystyrene scaffold which could be used routinely for three-dimensional (3D) cell culture experimentation. A linear relationship (p<0.01p<0.01) between three principal process variables (applied voltage, working distance and polymer concentration) and fibre diameter was reliably established enabling a mathematical model to be developed to standardise the electrospinning process. Surface chemistry and bulk architecture were manipulated to increase wetting and handling characteristics, respectively. X-ray photoelectron spectroscopy (XPS) confirmed the presence of oxygen-containing groups after argon plasma treatment, resulting in a similar surface chemistry to treated tissue culture plastic. The bulk architecture of the scaffolds was characterised by scanning electron microscopy (SEM) to assess the alignment of both random and aligned electrospun fibres, which were calculated to be 0.15 and 0.66, respectively. This compared to 0.51 for collagen fibres associated with native tissue. Tensile strength and strain of approximately of 0.15 MPa and 2.5%, respectively, allowed the scaffolds to be routinely handled for tissue culture purposes. The efficiency of attachment of smooth muscle cells to electrospun scaffolds was assessed using a modified 3-[4,5-dimethyl(thiazol-2yl)-3,5-diphery] tetrazolium bromide assay and cell morphology was assessed by phalloidin-FITC staining of F-actin. Argon plasma treatment of electrospun polystyrene scaffold resulted in significantly increased cell attachment (p<0.05p<0.05). The alignment factors of the actin filaments were 0.19 and 0.74 for the random and aligned scaffold respectively, compared to 0.51 for the native tissue. The data suggests that electrospinning of polystyrene generates 3D scaffolds which complement polystyrene used in 2D cell culture systems.
Resumo:
Three-dimensional TiO2 with tunable morphology and crystalline phase was successfully prepared by the electrospinning technique and subsequent annealing. Porous-shaped anatase TiO2, cluster-shaped anatase TiO2, hierarchical-shaped rutile (minor) TiO2 and nano-necklace rutile (major) TiO2 were achieved at 500, 600, 700 and 800°C, respectively. The mechanism of the formation of these tailored morphologies and crystallinity was investigated. Lithium insertion properties were evaluated by galvanostatic and potentiostatic modes in half-cell configurations. By combining the large surface area, open mesoporosity and stable crystalline phase, the porous-shaped anatase TiO2 exhibited the highest capacity, best rate and cycling performance among the four samples. The present results demonstrated the usefulness of three-dimensional TiO 2 as an anode for lithium storage with improved electrode performance. © 2013 The Royal Society of Chemistry.
Resumo:
Magnetic polymer nanofibres intended for drug delivery have been designed and fabricated by electrospinning. Magnetite (Fe3O4) nanoparticles were successfully incorporated into electrospun nanofibre composites of two cellulose derivatives, dehydroxypropyl methyl cellulose phthalate (HPMCP) and cellulose acetate (CA), while indomethacin (IDN) and aspirin have been used as model drugs. The morphology of the neat and magnetic drug-loaded electrospun fibres and the release characteristics of the drugs in artificial intestinal juice were investigated. It was found that both types of electrospun composite nanofibres containing magnetite nanoparticles showed superparamagnetism at room temperature, and their saturation magnetisation and morphology depend on the Fe3O4 nanoparticle content. Furthermore, the presence of the magnetite nanoparticles did not affect the drug release profiles of the nanofibrous devices. The feasibility of controlled drug release to a target area of treatment under the guidance of an external magnetic field has also been demonstrated, showing the viability of the concept of magnetic drug-loaded polymeric composite nanofibres for magneto-chemotherapy.
Resumo:
This thesis describes the production of advanced materials comprising a wide array of polymer-based building blocks. These materials include bio-hybrid polymer-peptide conjugates, based on phenylalanine and poly(ethylene oxide), and polymers with intrinsic microporosity (PIMs). Polymer-peptides conjugates were previously synthesised using click chemistry. Due to the inherent disadvantages of the reported synthesis, a new, simpler, inexpensive protocol was sought. Three synthetic methods based on amidation chemistry were investigated for both oligopeptide and polymerpeptide coupling. The resulting conjugates produced were then assessed by various analytical techniques, and the new synthesis was compared with the established protocol. An investigation was also carried out focussing on polymer-peptide coupling via ester chemistry, involving deprotection of the carboxyl terminus of the peptide. Polymer-peptide conjugates were also assessed for their propensity to self-assemble into thixotropic gels in an array of solvent mixtures. Determination of the rules governing this particular self-assembly (gelation) was required. Initial work suggested that at least four phenylalanine peptide units were necessary for self-assembly, due to favourable hydrogen bond interactions. Quantitative analysis was carried out using three analytical techniques (namely rheology, FTIR, and confocal microscopy) to probe the microstructure of the material and provided further information on the conditions for self-assembly. Several polymers were electrospun in order to produce nanofibres. These included novel materials such as PIMs and the aforementioned bio-hybrid conjugates. An investigation of the parameters governing successful fibre production was carried out for PIMs, polymer-peptide conjugates, and for nanoparticle cages coupled to a polymer scaffold. SEM analysis was carried out on all material produced during these electrospinning experiments.
Resumo:
Polymer beads have attracted considerable interest for use in catalysis, drug delivery, and photonics due to their particular shape and surface morphology. Electrospinning, typically used for producing nanofibers, can also be used to fabricate polymer beads if the solution has a sufficiently low concentration. In this work, a novel approach for producing more uniform, intact beads is presented by electrospinning self-assembled block copolymer (BCP) solutions. This approach allows a relatively high polymer concentration to be used, yet with a low degree of entanglement between polymer chains due to microphase separation of the BCP in a selective solvent system. Herein, to demonstrate the technology, a well-studied polystyrene-poly(ethylene butylene)–polystyrene triblock copolymer is dissolved in a co-solvent system. The effect of solvent composition on the characteristics of the fibers and beads is intensively studied, and the mechanism of this fiber-to-bead is found to be dependent on microphase separation of the BCP.
Resumo:
Carbon nanotubes (CNTs) have been produced by the tunneling of cobalt nanoparticles in carbon fibers that are derived from electrospun polyacrylonitrile (PAN) fibers. During annealing, the PAN fibers transform to a composite of cobalt nanodroplets and carbon fibers. Driven by the high chemical potential of wrinkled graphene platelets and amorphous carbon with respect to graphite, the cobalt nanodroplets are to tunnel in the carbon fibers. When cobalt nanodroplets have an elongated shape, carbon atoms dissolved in the droplets precipitate preferentially and completely at their lateral sides, producing perfect CNTs that form bulk structures. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Carbon is a versatile material which is composed of different allotropes, and also come in with different structures. Carbon nanofibres (CNFs) is one dimensional carbon nanomaterials, which have exhibited superior mechanical properties, great specific area, good electrical conductivity, good biocompatibility, and ease of modification. In addition to the lower cost associated to compare with carbon nanotubes (CNTs), CNFs have been attracted in numerous applications, such as reinforcement materials, filtrations, Li-ion battery, supercapacitor as well as tissue engineering, just to list a few. Therefore, it is a great deal to understand the relationship between the fabrication conditions and the characteristics of the resulted CNFs. In this project, electrospun PAN NFs were used as precursor material to fabricate carbon nanofibres. In order to produce CNFs with good morphology, the processing parameters of PAN nanofibres by electrospinning was optimized toward to the morphology at solution concentration of 12 wt%. The optimized processing parameters at given concentration were 16 kV, 14 cm and 1.5 mL/h, which led to the formation of PAN NFs with average fibre diameter of approximately 260 nm. Along with the effect of processing parameter study, the effect of concentration on the morphology was also carried out at optimized processing parameters. It was found that by increasing concentration of PAN solution from 2 to 16%, the resulted PAN transformed from beads only, to beaded fibres and finally to smooth fibres. With further increasing concentration the morphology of smooth fibres remain with increase in the fibre diameter. Electrospun PAN NFs with average fibre of 306 nm was selected to be converted into CNFs by using standard heating procedures, stabilisation in air at 280 °C and carbonization in N2. The effect of carbonization temperature ranging from 500 to 1000 °C was investigated, by using SEM, FTIR, Raman, and Impedance spectroscopy. With increasing carbonization temperature from 500 to 1000 °C, the diameter of NFs was decreased from 260 to 187, associated with loss of almost all functional groups of NFs. It was indicated by Raman results, that the graphitic crystallite size was increased from 2.62 to 5.24 nm, and the activation energy obtained for this growth was 7570 J/mol. Furthermore, impedance results (i.e. Cole-Cole plot) revealed that the electrical characteristic of CNFs transitioned from being insulating to electrically conducting in nature, suggested by the different electrical circuits extracted from Cole-Cole plots with carbonization temperature from 500 to 800 °C. The carbonization on PAN NFs with diameter of ~431nm was carried out by using novel route, microwave plasma enhance chemical vapour deposition (MPECVD) process. To compare with carbonized PAN NFs by using conventional route, MPECVD was not only able to facilitate carbonization process, but more interestingly can form carbon nanowalls (CNWs) grown on the surfaces of carbonized PAN NFs. Suggested by the unique morphology, the potential applications for the resulted carbon fibrous hybrid materials are supercapacitor electrode material, filtrations, and etc., The method developed in this project required one step less, compared with other literature. Therefore, using MPECVD on stabilised PAN NFs is proposed as economical, and straightforward approach towards mass production of carbon fibrous hybrid materials containing CNWs.
Resumo:
We used microwave plasma enhanced chemical vapor deposition (MPECVD) to carbonize an electrospun polyacrylonitrile (PAN) precursor to form carbon fibers. Scanning electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the fibers at different evolution stages. It was found that MPECVD-carbonized PAN fibers do not exhibit any significant change in the fiber diameter, whilst conventionally carbonized PAN fibers show a 33% reduction in the fiber diameter. An additional coating of carbon nanowalls (CNWs) was formed on the surface of the carbonized PAN fibers during the MPECVD process without the assistance of any metallic catalysts. The result presented here may have a potential to develop a novel, economical, and straightforward approach towards the mass production of carbon fibrous materials containing CNWs. © 2013 American Institute of Physics.
Resumo:
CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.