8 resultados para Electronic portal imaging device

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years the optical domain has been traditionally reserved for node-to-node transmission with the processing and switching achieved entirely in the electrical domain. However, with the constantly increasing demand for bandwidth and the resultant increase in transmission speeds, there is a very real fear that current electronic technology as used for processing will not be able to cope with future demands. Fuelled by this requirement for faster processing speeds, considerable research is currently being carried out into the potential of All-optical processing. One of the fundamental obstacles in realising All-optical processing is the requirement for All-optical buffering. Without all-optical buffers it is extremely difficult to resolve situations such as contention and congestion. Many devices have been proposed to solve this problem however none of them provide the perfect solution. The subject of this research is to experimentally demonstrate a novel all-optical memory device. Unlike many previously demonstrated optical storage devices the device under consideration utilises only a single loop mirror and a single SOA as its switch, whilst providing full regenerative capabilities required for long-term storage. I will explain some of the principles and characteristics of the device, which will then be experimentally demonstrated. The device configuration will then be studied and investigated as to its suitability for Hybrid Integrated Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FULL TEXT: Like many people one of my favourite pastimes over the holiday season is to watch the great movies that are offered on the television channels and new releases in the movie theatres or catching up on those DVDs that you have been wanting to watch all year. Recently we had the new ‘Star Wars’ movie, ‘The Force Awakens’, which is reckoned to become the highest grossing movie of all time, and the latest offering from James Bond, ‘Spectre’ (which included, for the car aficionados amongst you, the gorgeous new Aston Martin DB10). It is always amusing to see how vision correction or eye injury is dealt with by movie makers. Spy movies and science fiction movies have a freehand to design aliens with multiples eyes on stalks or retina scanning door locks or goggles that can see through walls. Eye surgery is usually shown in some kind of day case simplified laser treatment that gives instant results, apart from the great scene in the original ‘Terminator’ movie where Arnold Schwarzenegger's android character encounters an injury to one eye and then proceeds to remove the humanoid covering to this mechanical eye over a bathroom sink. I suppose it is much more difficult to try and include contact lenses in such movies. Although you may recall the film ‘Charlie's Angels’, which did have a scene where one of the Angels wore a contact lens that had a retinal image imprinted on it so she could by-pass a retinal scan door lock and an Eddy Murphy spy movie ‘I-Spy’, where he wore contact lenses that had electronic gadgetry that allowed whatever he was looking at to be beamed back to someone else, a kind of remote video camera device. Maybe we aren’t quite there in terms of devices available but these things are probably not the behest of science fiction anymore as the technology does exist to put these things together. The technology to incorporate electronics into contact lenses is being developed and I am sure we will be reporting on it in the near future. In the meantime we can continue to enjoy the unrealistic scenes of eye swapping as in the film ‘Minority Report’ (with Tom Cruise). Much more closely to home, than in a galaxy far far away, in this issue you can find articles on topics much nearer to the closer future. More and more optometrists in the UK are becoming registered for therapeutic work as independent prescribers and the number is likely to rise in the near future. These practitioners will be interested in the review paper by Michael Doughty, who is a member of the CLAE editorial panel (soon to be renamed the Jedi Council!), on prescribing drugs as part of the management of chronic meibomian gland dysfunction. Contact lenses play an active role in myopia control and orthokeratology has been used not only to help provide refractive correction but also in the retardation of myopia. In this issue there are three articles related to this topic. Firstly, an excellent paper looking at the link between higher spherical equivalent refractive errors and the association with slower axial elongation. Secondly, a paper that discusses the effectiveness and safety of overnight orthokeratology with high-permeability lens material. Finally, a paper that looks at the stabilisation of early adult-onset myopia. Whilst we are always eager for new and exciting developments in contact lenses and related instrumentation in this issue of CLAE there is a demonstration of a novel and practical use of a smartphone to assisted anterior segment imaging and suggestions of this may be used in telemedicine. It is not hard to imagine someone taking an image remotely and transmitting that back to a central diagnostic centre with the relevant expertise housed in one place where the information can be interpreted and instruction given back to the remote site. Back to ‘Star Wars’ and you will recall in the film ‘The Phantom Menace’ when Qui-Gon Jinn first meets Anakin Skywalker on Tatooine he takes a sample of his blood and sends a scan of it back to Obi-Wan Kenobi to send for analysis and they find that the boy has the highest midichlorian count ever seen. On behalf of the CLAE Editorial board (or Jedi Council) and the BCLA Council (the Senate of the Republic) we wish for you a great 2016 and ‘may the contact lens force be with you’. Or let me put that another way ‘the CLAE Editorial Board and BCLA Council, on behalf of, a great 2016, we wish for you!’

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an imaging system based on light emitting diode (LED) illumination that produces multispectral optical images of the human ocular fundus. It uses a conventional fundus camera equipped with a high power LED light source and a highly sensitive electron-multiplying charge coupled device camera. It is able to take pictures at a series of wavelengths in rapid succession at short exposure times, thereby eliminating the image shift introduced by natural eye movements (saccades). In contrast with snapshot systems the images retain full spatial resolution. The system is not suitable for applications where the full spectral resolution is required as it uses discrete wavebands for illumination. This is not a problem in retinal imaging where the use of selected wavelengths is common. The modular nature of the light source allows new wavelengths to be introduced easily and at low cost. The use of wavelength-specific LEDs as a source is preferable to white light illumination and subsequent filtering of the remitted light as it minimizes the total light exposure of the subject. The system is controlled via a graphical user interface that enables flexible control of intensity, duration, and sequencing of sources in synchrony with the camera. Our initial experiments indicate that the system can acquire multispectral image sequences of the human retina at exposure times of 0.05 s in the range of 500-620 nm with mean signal to noise ratio of 17 dB (min 11, std 4.5), making it suitable for quantitative analysis with application to the diagnosis and screening of eye diseases such as diabetic retinopathy and age-related macular degeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin coating polymer blend thin films provides a method to produce multiphase functional layers of high uniformity covering large surface areas. Applications for such layers include photovoltaics and light-emitting diodes where performance relies upon the nanoscale phase separation morphology of the spun film. Furthermore, at micrometer scales, phase separation provides a route to produce self-organized structures for templating applications. Understanding the factors that determine the final phase-separated morphology in these systems is consequently an important goal. However, it has to date proved problematic to fully test theoretical models for phase separation during spin coating, due to the high spin speeds, which has limited the spatial resolution of experimental data obtained during the coating process. Without this fundamental understanding, production of optimized micro- and nanoscale structures is hampered. Here, we have employed synchronized stroboscopic illumination together with the high light gathering sensitivity of an electron-multiplying charge-coupled device camera to optically observe structure evolution in such blends during spin coating. Furthermore the use of monochromatic illumination has allowed interference reconstruction of three-dimensional topographies of the spin-coated film as it dries and phase separates with nanometer precision. We have used this new method to directly observe the phase separation process during spinning for a polymer blend (PS-PI) for the first time, providing new insights into the spin-coating process and opening up a route to understand and control phase separation structures. © 2011 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnification can be provided to assist those with visual impairment to make the best use of remaining vision. Electronic transverse magnification of an object was first conceived for use in low vision in the late 1950s, but has developed slowly and is not extensively prescribed because of its relatively high cost and lack of portability. Electronic devices providing transverse magnification have been termed closed-circuit televisions (CCTVs) because of the direct cable link between the camera imaging system and monitor viewing system, but this description generally refers to surveillance devices and does not indicate the provision of features such as magnification and contrast enhancement. Therefore, the term Electronic Vision Enhancement Systems (EVES) is proposed to better distinguish and describe such devices. This paper reviews current knowledge on EVES for the visually impaired in terms of: classification; hardware and software (development of technology, magnification and field-of-view, contrast and image enhancement); user aspects (users and usage, reading speed and duration, and training); and potential future development of EVES. © 2003 The College of Optometrists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All-optical signal processing is a powerful tool for the processing of communication signals and optical network applications have been routinely considered since the inception of optical communication. There are many successful optical devices deployed in today’s communication networks, including optical amplification, dispersion compensation, optical cross connects and reconfigurable add drop multiplexers. However, despite record breaking performance, all-optical signal processing devices have struggled to find a viable market niche. This has been mainly due to competition from electro-optic alternatives, either from detailed performance analysis or more usually due to the limited market opportunity for a mid-link device. For example a wavelength converter would compete with a reconfigured transponder which has an additional market as an actual transponder enabling significantly more economical development. Never-the-less, the potential performance of all-optical devices is enticing. Motivated by their prospects of eventual deployment, in this chapter we analyse the performance and energy consumption of digital coherent transponders, linear coherent repeaters and modulator based pulse shaping/frequency conversion, setting a benchmark for the proposed all-optical implementations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Opto-acoustic imaging (OAI) shows particular promise for in-vivo biomedical diagnostics. Its applications include cardiovascular, gastrointestinal and urogenital systems imaging. Opto-acoustic endoscopy (OAE) allows the imaging of body parts through cavities permitting entry. The critical parameter is the physical size of the device, allowing compatibility with current technology, while governing flexibility of the distal end of the endoscope based on the needs of the sensor. Polymer optical fibre (POF) presents a novel approach for endoscopic applications and has been positively discussed and compared in existing publications. A great advantage can be obtained for endoscopy due to a small size and array potential to provide discrete imaging speed improvements. Optical fibre exhibits numerous advantages over conventional piezo-electric transducers, such as immunity from electromagnetic interference and a higher resolution at small sizes. Furthermore, micro structured polymer optical fibres offer over 12 times the sensitivity of silica fibre. We present a polymer fibre Bragg grating ultrasound detector with a core diameter of 125 microns. We discuss the ultrasonic signals received and draw conclusions on the opportunities and challenges of applying this technology in biomedical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explored the potential of a carbon nanotube (CNT) coating working in conjunction with a recently developed localized surface plasmon (LSP) device (based upon a nanostructured thin film consisting of of nano-wires of platinum) with ultra-high sensitivity to changes in the surrounding index. The uncoated LSP sensor’s transmission resonances exhibited a refractive index sensitivity of Δλ/Δn ~ -6200nm/RIU and ΔΙ/Δn ~5900dB/RIU, which is the highest reported spectral sensitivity of a fiber optic sensor to bulk index changes within the gas regime. The complete device provides the first demonstration of the chemically specific gas sensing capabilities of CNTs utilizing their optical characteristics. This is proven by investigating the spectral response of the sensor before and after the adhesion of CNTs to alkane gases along with carbon dioxide. The device shows a distinctive spectral response in the presence of gaseous CO2 over and above what is expected from general changes in the bulk refractive index. This fiber device yielded a limit of detection of 150ppm for CO2 at a pressure of one atmosphere. Additionally the adhered CNTs actually reduce sensitivity of the device to changes in bulk refractive index of the surrounding medium. The polarization properties of the LSP sensor resonances are also investigated and it is shown that there is a reduction in the overall azimuthal polarization after the CNTs are applied. These optical devices offer a way of exploiting optically the chemical selectivity of carbon nanotubes, thus providing the potential for real-world applications in gas sensing in many inflammable and explosive environments. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.