18 resultados para Electronic, optical and computing companies
em Aston University Research Archive
Resumo:
In this letter, we directly compare digital back-propagation (DBP) with spectral inversion (SI) both with and without symmetry correction via dispersive chirping, and numerically demonstrate that predispersed SI outperforms traditional SI, and approaches the performance of computationally exhaustive ideal DBP. Furthermore, we propose for the first time a novel practical scheme employing predispersed SI to compensate the bulk of channel nonlinearities, and DBP to accommodate the residual penalties due to varying SI location, with predispersed SI ubiquitously employed along the transmission link with <;0.5-dB penalty. Our results also show that predispersed SI enables partial compensation of cross-phase modulation effects, increasing the transmission reach by ×2.
Resumo:
The current optical communications network consists of point-to-point optical transmission paths interconnected with relatively low-speed electronic switching and routing devices. As the demand for capacity increases, then higher speed electronic devices will become necessary. It is however hard to realise electronic chip-sets above 10 Gbit/s, and therefore to increase the achievable performance of the network, electro-optic and all-optic switching and routing architectures are being investigated. This thesis aims to provide a detailed experimental analysis of high-speed optical processing within an optical time division multiplexed (OTDM) network node. This includes the functions of demultiplexing, 'drop and insert' multiplexing, data regeneration, and clock recovery. It examines the possibilities of combining these tasks using a single device. Two optical switching technologies are explored. The first is an all-optical device known as 'semiconductor optical amplifier-based nonlinear optical loop mirror' (SOA-NOLM). Switching is achieved by using an intense 'control' pulse to induce a phase shift in a low-intensity signal propagating through an interferometer. Simultaneous demultiplexing, data regeneration and clock recovery are demonstrated for the first time using a single SOA-NOLM. The second device is an electroabsorption (EA) modulator, which until this thesis had been used in a uni-directional configuration to achieve picosecond pulse generation, data encoding, demultiplexing, and 'drop and insert' multiplexing. This thesis presents results on the use of an EA modulator in a novel bi-directional configuration. Two independent channels are demultiplexed from a high-speed OTDM data stream using a single device. Simultaneous demultiplexing with stable, ultra-low jitter clock recovery is demonstrated, and then used in a self-contained 40 Gbit/s 'drop and insert' node. Finally, a 10 GHz source is analysed that exploits the EA modulator bi-directionality to increase the pulse extinction ratio to a level where it could be used in an 80 Gbit/s OTDM network.
Resumo:
Digital back-propagation (DBP) has recently been proposed for the comprehensive compensation of channel nonlinearities in optical communication systems. While DBP is attractive for its flexibility and performance, it poses significant challenges in terms of computational complexity. Alternatively, phase conjugation or spectral inversion has previously been employed to mitigate nonlinear fibre impairments. Though spectral inversion is relatively straightforward to implement in optical or electrical domain, it requires precise positioning and symmetrised link power profile in order to avail the full benefit. In this paper, we directly compare ideal and low-precision single-channel DBP with single-channel spectral-inversion both with and without symmetry correction via dispersive chirping. We demonstrate that for all the dispersion maps studied, spectral inversion approaches the performance of ideal DBP with 40 steps per span and exceeds the performance of electronic dispersion compensation by ~3.5 dB in Q-factor, enabling up to 96% reduction in complexity in terms of required DBP stages, relative to low precision one step per span based DBP. For maps where quasi-phase matching is a significant issue, spectral inversion significantly outperforms ideal DBP by ~3 dB.
Resumo:
After its privatization in 1989, the water and sewerage industry of England and Wales faced a new regulatory régime and implemented a substantial capital investment program aimed at improving water and environmental standards. A new RPI + K regulatory pricing system was designed to compensate the industry for its increased capital costs, encourage increased efficiency, and maintain fair prices for customers. This paper evaluates how successful privatization and the resulting system of economic regulation has been. Estimates of productivity growth, derived with quality adjusted output indices, suggest that despite reductions in labor usage, total factor productivity growth has not improved since privatization. Moreover, total price performance indices reveal that increases in output prices have outstripped increases in input costs, a trend which is largely responsible for the increase in economic profits that has occurred since privatization. * We would like to thank Emmanuel Thanassoulis, Joshy Easaw, Jim Love, John Sawkins, and an anonymous referee for helpful comments on earlier drafts of this paper. The usual disclaimer applies.
Resumo:
The thesis will show how to equalise the effect of quantal noise across spatial frequencies by keeping the retinal flux (If-2) constant. In addition, quantal noise is used to study the effect of grating area and spatial frequency on contrast sensitivity resulting in the extension of the new contrast detection model describing the human contrast detection system as a simple image processor. According to the model the human contrast detection system comprises low-pass filtering due to ocular optics, addition of light dependent noise at the event of quantal absorption, high-pass filtering due to the neural visual pathways, addition of internal neural noise, after which detection takes place by a local matched filter, whose sampling efficiency decreases as grating area is increased. Furthermore, this work will demonstrate how to extract both the optical and neural modulation transfer functions of the human eye. The neural transfer function is found to be proportional to spatial frequency up to the local cut-off frequency at eccentricities of 0 - 37 deg across the visual field. The optical transfer function of the human eye is proposed to be more affected by the Stiles-Crawford -effect than generally assumed in the literature. Similarly, this work questions the prevailing ideas about the factors limiting peripheral vision by showing that peripheral optical acts as a low-pass filter in normal viewing conditions, and therefore the effect of peripheral optics is worse than generally assumed.
Resumo:
Worldwide floods have become one of the costliest weather-related hazards, causing large-scale human, economic, and environmental damage during the recent past. Recent years have seen a large number of such flood events around the globe, with Europe and the United Kingdom being no exception. Currently, about one in six properties in England is at risk of flooding (EA, 2009), and the risk is expected to further increase in the future (Evans et al., 2004). Although public spending on community-level flood protection has increased and some properties are protected by such protection schemes, many properties at risk of flooding may still be left without adequate protection. As far as businesses are concerned, this has led to an increased need for implementing strategies for property-level flood protection and business continuity, in order to improve their capacity to survive a flood hazard. Small and medium-sized enterprises (SMEs) constitute a significant portion of the UK business community. In the United Kingdom, more than 99% of private sector enterprises fall within the category of SMEs (BERR, 2008). They account for more than half of employment creation (59%) and turnover generation (52%) (BERR, 2008), and are thus considered the backbone of the UK economy. However, they are often affected disproportionately by natural hazards when compared with their larger counterparts (Tierney and Dahlhamer, 1996; Webb, Tierney, and Dahlhamer, 2000; Alesch et al., 2001) due to their increased vulnerability. Previous research reveals that small businesses are not adequately prepared to cope with the risk of natural hazards and to recover following such events (Tierney and Dahlhamer, 1996; Alesch et al., 2001; Yoshida and Deyle, 2005; Crichton, 2006; Dlugolecki, 2008). For instance, 90% of small businesses do not have adequate insurance coverage for their property (AXA Insurance UK, 2008) and only about 30% have a business continuity plan (Woodman, 2008). Not being adequately protected by community-level flood protection measures as well as property- and business-level protection measures threatens the survival of SMEs, especially those located in flood risk areas. This chapter discusses the potential effects of flood hazards on SMEs and the coping strategies that the SMEs can undertake to ensure the continuity of their business activities amid flood events. It contextualizes this discussion within a survey conducted under the Engineering and Physical Sciences Research Council (EPSRC) funded research project entitled “Community Resilience to Extreme Weather — CREW”.
Resumo:
The primary aim of this thesis was to investigate the in vivo ocular morphological and contractile changes occurring within the accommodative apparatus prior to the onset of presbyopia, with particular reference to ciliary muscle changes with age and the origin of a myopic shift in refraction during incipient presbyopia. Commissioned semi-automated software proved capable of extracting accurate and repeatable measurements from crystalline lens and ciliary muscle Anterior Segment Optical Coherence Tomography (AS-OCT) images and reduced the subjectivity of AS-OCT image analysis. AS-OCT was utilised to document longitudinal changes in ciliary muscle morphology within an incipient presbyopic population (n=51). A significant antero-inwards shift of ciliary muscle mass was observed after 2.5 years. Furthermore, in a subgroup study (n=20), an accommodative antero-inwards movement of ciliary muscle mass was evident. After 2.5 years, the centripetal response of the ciliary muscle significantly attenuated during accommodation, whereas the antero-posterior mobility of the ciliary muscle remained invariant. Additionally, longitudinal measurement of ocular biometry revealed a significant increase in crystalline lens thickness and a corresponding decrease in anterior chamber depth after 2.5 years (n=51). Lenticular changes appear to be determinant of changes in refraction during incipient presbyopia. During accommodation, a significant increase in crystalline lens thickness and axial length was observed, whereas anterior chamber depth decreased (n=20). The change in ocular biometry per dioptre of accommodation exerted remained invariant after 2.5 years. Cross-sectional ocular biometric data were collected to quantify accommodative axial length changes from early adulthood to advanced presbyopia (n=72). Accommodative axial length elongation significantly attenuated during presbyopia, which was consistent with a significant increase in ocular rigidity during presbyopia. The studies presented in this thesis support the Helmholtz theory of accommodation and despite the reduction in centripetal ciliary muscle contractile response with age, primarily implicate lenticular changes in the development of presbyopia.
Resumo:
In this paper, we analyze the sensitivities of coherent optical receivers and microwave receivers. We derive theoretical limits of signal-to-noise ratio and bit error rate. By applying a generic approach to a broad range of receivers, we can compare their performance directly. Other publications have considered some of these receivers. However, their diverse nature obscures the big picture. Using our results as a unifying platform, previous publications can be compared and discrepancies between them identified.
Resumo:
We discuss recent progress on the use of optical and digital phase conjugation techniques for nonlinearity compensation in optical fiber links. We compare the achievable performance gain of phase conjugated twin wave applied in two polarization states and time segments with mid-link optical phase conjugation and digital back propagation. For multicarrier transmission scheme such as orthogonal frequency division multiplexing, two recently proposed schemes, namely phase-conjugated pilots and phase-conjugated subcarrier coding are reviewed.