9 resultados para Electromagnetic Vibration Energy Harvesting

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an analytical model based on the WKB approach to evaluate the experimental results of the femtosecond pump-probe measurements of the transmittance and reflectance obtained on thin membranes of porous silicon. The model allows us to retrieve a pump-induced nonuniform complex dielectric function change along the membrane depth. We show that the model fitting to the experimental data requires a minimal number of fitting parameters while still complying with the restriction imposed by the Kramers-Kronig relation. The developed model has a broad range of applications for experimental data analysis and practical implementation in the design of devices involving a spatially nonuniform dielectric function, such as in biosensing, wave-guiding, solar energy harvesting, photonics and electro-optical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis reports the development of a reliable method for the prediction of response to electromagnetically induced vibration in large electric machines. The machines of primary interest are DC ship-propulsion motors but much of the work reported has broader significance. The investigation has involved work in five principal areas. (1) The development and use of dynamic substructuring methods. (2) The development of special elements to represent individual machine components. (3) Laboratory scale investigations to establish empirical values for properties which affect machine vibration levels. (4) Experiments on machines on the factory test-bed to provide data for correlation with prediction. (5) Reasoning with regard to the effect of various design features. The limiting factor in producing good models for machines in vibration is the time required for an analysis to take place. Dynamic substructuring methods were adopted early in the project to maximise the efficiency of the analysis. A review of existing substructure- representation and composite-structure assembly methods includes comments on which are most suitable for this application. In three appendices to the main volume methods are presented which were developed by the author to accelerate analyses. Despite significant advances in this area, the limiting factor in machine analyses is still time. The representation of individual machine components was addressed as another means by which the time required for an analysis could be reduced. This has resulted in the development of special elements which are more efficient than their finite-element counterparts. The laboratory scale experiments reported were undertaken to establish empirical values for the properties of three distinct features - lamination stacks, bolted-flange joints in rings and cylinders and the shimmed pole-yoke joint. These are central to the preparation of an accurate machine model. The theoretical methods are tested numerically and correlated with tests on two machines (running and static). A system has been devised with which the general electromagnetic forcing may be split into its most fundamental components. This is used to draw some conclusions about the probable effects of various design features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When a ferromagnetic steel billet was heated by induction a large increase in the amplitude of longitudinal vibration frequently occurred as a result of resonance. This happened when a natural frequency of the bar coincided with twice the heating frequency or multiples thereof. The temperature at which resonance occurred depended on a number of factors including billet length and heating power. Resonance was most often observed when the surface temperature of the billet reached the Curie point. It is well established that magnetostrictive vibrations occur in a ferromagnetic material subjected to an alternating electromagnetic field, but existing data suggests that linear magnetostriction decreases towards the Curie point. Linear magnetostriction was measured in a sample of mild steel up to 800ºC using a high temperature strain gauge. The magnetostriction constant 100 was calculated assuming an average grain orientation in mild steel. The data was found to be comparable to that published for single crystals of iron. It was discovered that linear magnetostriction was responsible for resonance below 600ºC but not for temperatures near the Curie point. Other possible causes of resonance such as forces produced by the interaction between eddy currents and the alternating electromagnetic field, the alpha to gamma phase transformation and the existence of a thin ferromagnetic layer were investigated. None were found to account for resonance in bars of mild steel heated by induction. Experimental work relating to the induction heating of steel is compared to previous work on the subject of electromagnetic generation of ultrasound where a similar increase of the amplitude of longitudinal waves in steel is reported at the Curie point. It is concluded that the two phenomena are related as they show strong similarities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drying is an important unit operation in process industry. Results have suggested that the energy used for drying has increased from 12% in 1978 to 18% of the total energy used in 1990. A literature survey of previous studies regarding overall drying energy consumption has demonstrated that there is little continuity of methods and energy trends could not be established. In the ceramics, timber and paper industrial sectors specific energy consumption and energy trends have been investigated by auditing drying equipment. Ceramic products examined have included tableware, tiles, sanitaryware, electrical ceramics, plasterboard, refractories, bricks and abrasives. Data from industry has shown that drying energy has not varied significantly in the ceramics sector over the last decade, representing about 31% of the total energy consumed. Information from the timber industry has established that radical changes have occurred over the last 20 years, both in terms of equipment and energy utilisation. The energy efficiency of hardwood drying has improved by 15% since the 1970s, although no significant savings have been realised for softwood. A survey estimating the energy efficiency and operating characteristics of 192 paper dryer sections has been conducted. Drying energy was found to increase to nearly 60% of the total energy used in the early 1980s, but has fallen over the last decade, representing 23% of the total in 1993. These results have demonstrated that effective energy saving measures, such as improved pressing and heat recovery, have been successfully implemented since the 1970s. Artificial neural networks have successfully been applied to model process characteristics of microwave and convective drying of paper coated gypsum cove. Parameters modelled have included product moisture loss, core gypsum temperature and quality factors relating to paper burning and bubbling defects. Evaluation of thermal and dielectric properties have highlighted gypsum's heat sensitive characteristics in convective and electromagnetic regimes. Modelling experimental data has shown that the networks were capable of simulating drying process characteristics to a high degree of accuracy. Product weight and temperature were predicted to within 0.5% and 5C of the target data respectively. Furthermore, it was demonstrated that the underlying properties of the data could be predicted through a high level of input noise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the vibration characteristics of the coupling system of a microscale fluid-loaded rectangular isotropic plate attached to a uniformly distributed mass. Previous literature has, respectively, studied the changes in the plate vibration induced by an acoustic field or by the attached mass loading. This paper investigates the issue of involving these two types of loading simultaneously. Based on Lamb's assumption of the fluid-loaded structure and the Rayleigh–Ritz energy method, this paper presents an analytical solution for the natural frequencies and mode shapes of the coupling system. Numerical results for microplates with different types of boundary conditions have also been obtained and compared with experimental and numerical results from previous literature. The theoretical model and novel analytical solution are of particular interest in the design of microplate-based biosensing devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposes a new type of greenhouse for water re-use and energy saving for agriculture in arid and semi-arid inland regions affected by groundwater salinity. It combines desalination using reverse osmosis (RO), re-use of saline concentrate rejected by RO for cooling, and rainwater harvesting. Experimental work was carried at GBPUAT, Pantnagar, India. Saline concentrate was fed to evaporative cooling pads of greenhouse and found to evaporate at similar rates as conventional freshwater. Two enhancements to the system are described: i) A jet pump, designed and tested to use pressurized reject stream to re-circulate cooling water and thus maintain uniform wetness in cooling pads, was found capable of multiplying flow of cooling water by a factor of 2.5 to 4 while lifting water to a head of 1.55 m; and ii) Use of solar power to drive ventilation fans of greenhouse, for which an electronic circuit has been produced that uses maximum power-point tracking to maximize energy efficiency. Re-use of RO rejected concentrate for cooling saves water (6 l d-1 m-2) of greenhouse floor area and the improved fan could reduce electricity consumption by a factor 8.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy dissipation and fatigue properties of nano-layered thin films are less well studied than bulk properties. Existing experimental methods for studying energy dissipation properties, typically using magnetic interaction as a driving force at different frequencies and a laser-based deformation measurement system, are difficult to apply to two-dimensional materials. We propose a novel experimental method to perform dynamic testing on thin-film materials by driving a cantilever specimen at its fixed end with a bimorph piezoelectric actuator and monitoring the displacements of the specimen and the actuator with a fibre-optic system. Upon vibration, the specimen is greatly affected by its inertia, and behaves as a cantilever beam under base excitation in translation. At resonance, this method resembles the vibrating reed method conventionally used in the viscoelasticity community. The loss tangent is obtained from both the width of a resonance peak and a free-decay process. As for fatigue measurement, we implement a control algorithm into LabView to maintain maximum displacement of the specimen during the course of the experiment. The fatigue S-N curves are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electromagnetic design of a 1.12-MW, 18 000-r/min high-speed permanent-magnet motor (HSPMM) is carried out based on the analysis of pole number, stator slot number, rotor outer diameter, air-gap length, permanent magnet material, thickness, and pole arc. The no-load and full-load performance of the HSPMM is investigated in this paper by using 2-D finite element method (FEM). In addition, the power losses in the HSPMM including core loss, winding loss, rotor eddy current loss, and air friction loss are predicted. Based on the analysis, a prototype motor is manufactured and experimentally tested to verify the machine design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents the study of a two-degree-of-freedom (2 DOF) nonlinear system consisting of two grounded linear oscillators coupled to two separate light weight nonlinear energy sinks of an essentially nonlinear stiffness. In this thesis, Targeted Energy Transfer (TET) and NES concept are introduced. Previous studies and research of Energy pumping and NES are presented. The characters in nonlinear energy pumping have been introduced at the start of the thesis. For the aim to design the application of a tremor reduction assessment device, the knowledge of tremor reduction has also been mentioned. Two main parties have been presented in the research: dynamical theoretic method of nonlinear energy pumping study and experiments of nonlinear vibration reduction model. In this thesis, nonlinear energy sink (NES) has been studied and used as a core attachment for the research. A new theoretic method of nonlinear vibration reduction which with two NESs has been attached to a primary system has been designed and tested with the technology of targeted energy transfer. Series connection and parallel connection structure systems have been designed to run the tests. Genetic algorithm has been used and presented in the thesis for searching the fit components. One more experiment has been tested with the final components. The results have been compared to find out most efficiency structure and components for the theoretic model. A tremor reduction experiment has been designed and presented in the thesis. The experiment is for designing an application for reducing human body tremor. By using the theoretic method earlier, the experiment has been designed and tested with a tremor reduction model. The experiment includes several tests, one single NES attached system and two NESs attached systems with different structures. The results of theoretic models and experiment models have been compared. The discussion has been made in the end. At the end of the thesis, some further work has been considered to designing the device of the tremor reduction.