2 resultados para Electrodeposition technique

em Aston University Research Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium alloy diecasting AZ91CC, AZ61CC', AZ91HC and AZ71HC were electroplated using different pretreatment sequences which incorporated conventional zincate immersion processes. Satisfactory peel adhesion in excess of 7. 7 KNm -1 was achieved on AZ61CC using a sequence which was designated Canning. The comparatively low adhesion achieved on the AZ91HC was due to its poor surface quality as cast. Growth of deposits was monitored using a strip-and-analysis technique and the morphology of the various deposits were studied using scanning electron microscopy. Different pretreatment sequences resulted in different surface responses for the alloys but all alloys behaved in a similar manner in a particular sequence with regard to potential time-curves and the rate of zinc deposition. The role of fluoride in both the second stage solution and zinc immersion stages of the Canning pretreatment sequence was studied using techniques listed above and Auger electron spectroscopy. Complete coverage of the magnesium alloy surface with immersion zinc was achieved when fluoride was absent from the zincating solution. However, a zero adhesion value was indicated in both thermal cycling and peel tests. The presence of fluoride in the immersion zinc solution suppressed the rate of zinc deposition and affected the time taken to reach equilibrium during potential-time determinations. A mechanism is suggested to explain the significance of fluoride additions to the processing solutions. pH and composition of the zincating solution had a significant effect on the time taken to produce the step observed in the potential/time curves and hence equilibrium potential. Immersion zinc deposition occurred rapidly at first but then changed to a lower uniform rate at a point corresponding approximately to the step in the potential/time curve. Although the minimun levels of adhesion, using the Canning sequence, varied from 7.72 KNm-1 for alloy AZ61CC to 1.54 KNm-1 for alloy AZ91HC, all the alloys revealed ductile failure characteristics in the surface layer of the substrate after peel testing. Plated magnesium alloys exhibited good corrosion resistance when appropriately pretreated and overplated with adequate nickel chromium coatings. The immersion zinc layer was not preferentially attacked when pits penetrated to the coating/substrate interface. Hemispherical pits formed and attack on the substrate was severe. Of the pretreatment sequences investigated, the Canning one was the most premising with respect to peel adhesion and corrosion behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminium alloys S1C, NS4, HE9, LM25 and the 'difficult' zinc containing U.S. specification alloy used for automobile bumpers (X-7046), have been successfully electroplated using pretreatments which utilized either conventional immersion, elevated temperature or electrolytic modified alloy zincate (M.A.Z.) deposits. Satisfactory adhesion in excess of 7•5 KN m -I was only achieved on X-7046 using an electrolytic M.A.Z. pretreatment. The limitations of simple zincate solutions were demonstrated. Growth of deposits ~as monitored using a weight loss technique and the morphology of the various deposits studied using scanning electron microscopy. The characteristics of a specific alloy and processing sequence selected had a significant influence on the growth and morphology of the N.A.Z. deposi t. These all affected subsequent adhesion of electrodeposited nickel. The advantages of double-dip sequences were confirmed. Superior adhesion was associated with a uniform, thin, fine grained M.A.Z. deposit which exhibited rapid and complete surface coverage of the aluminium alloy. The presence of this preferred type deposit did not guarantee adhesion because a certain degree of etching was essential. For a satisfactory combination of alloy and M.A.Z. pretreatment, there was a specific optimum film weight per unit area which resulted in maximum adhesion. An ideal film weight of 0•06 :!: 0•01 mg cm-2was determined for S1C. Different film weights were required for the other alloys due to variations in surface topography caused by pretreatment. S1C was the easiest alloy on which to achieve high bond strength. Peel adhesion was not directly related to tensile strength of the alloy. The highest adhesion value was obtained on S1C which had the lowest strength of the alloys studied. The characteristics of the failure surfaces after peeling depended on alloy type, adhesion level and pretreatment employed. Plated aluminium alloys exhibited excellent corrosion resistance when appropriately pretreated. The M.A.Z. layer was not preferentially attacked. There was a threshold value of adhesion below which corrosion performance ~a8 poor. Alloy type, pretreatment and coating system influenced corrosion performance. Microporous chromium gave better corrosion protection than decorative chromium.