5 resultados para Electrical machine
em Aston University Research Archive
Resumo:
Traditional machinery for manufacturing processes are characterised by actuators powered and co-ordinated by mechanical linkages driven from a central drive. Increasingly, these linkages are replaced by independent electrical drives, each performs a different task and follows a different motion profile, co-ordinated by computers. A design methodology for the servo control of high speed multi-axis machinery is proposed, based on the concept of a highly adaptable generic machine model. In addition to the dynamics of the drives and the loads, the model includes the inherent interactions between the motion axes and thus provides a Multi-Input Multi-Output (MIMO) description. In general, inherent interactions such as structural couplings between groups of motion axes are undesirable and needed to be compensated. On the other hand, imposed interactions such as the synchronisation of different groups of axes are often required. It is recognised that a suitable MIMO controller can simultaneously achieve these objectives and reconciles their potential conflicts. Both analytical and numerical methods for the design of MIMO controllers are investigated. At present, it is not possible to implement high order MIMO controllers for practical reasons. Based on simulations of the generic machine model under full MIMO control, however, it is possible to determine a suitable topology for a blockwise decentralised control scheme. The Block Relative Gain array (BRG) is used to compare the relative strength of closed loop interactions between sub-systems. A number of approaches to the design of the smaller decentralised MIMO controllers for these sub-systems has been investigated. For the purpose of illustration, a benchmark problem based on a 3 axes test rig has been carried through the design cycle to demonstrate the working of the design methodology.
Resumo:
Improving bit error rates in optical communication systems is a difficult and important problem. The error correction must take place at high speed and be extremely accurate. We show the feasibility of using hardware implementable machine learning techniques. This may enable some error correction at the speed required.
Resumo:
Improving bit error rates in optical communication systems is a difficult and important problem. The error correction must take place at high speed and be extremely accurate. We show the feasibility of using hardware implementable machine learning techniques. This may enable some error correction at the speed required.
Resumo:
A fault tolerant, 5-phase PM generator has been developed for use on the low pressure (LP) shaft of an aircraft gas turbine engine. The machine operates at variable speed and therefore has a variable voltage, variable frequency electrical output (VVVF). The generator is to be used to provide a 350V DC bus for distribution throughout the aircraft, and a study has been carried out that identifies the most suitable AC-DC converter topology for this machine in terms of losses, electrical component ratings, filtering requirements and circuit complexity.