6 resultados para Electric resistance measurement
em Aston University Research Archive
Resumo:
The conventional design of forming rolls depends heavily on the individual skill of roll designers which is based on intuition and knowledge gained from previous work. Roll design is normally a trial an error procedure, however with the progress of computer technology, CAD/CAM systems for the cold roll-forming industry have been developed. Generally, however, these CAD systems can only provide a flower pattern based on the knowledge obtained from previously successful flower patterns. In the production of ERW (Electric Resistance Welded) tube and pipe, the need for a theoretical simulation of the roll-forming process, which can not only predict the occurrence of the edge buckling but also obtain the optimum forming condition, has been recognised. A new simulation system named "CADFORM" has been devised that can carry out the consistent forming simulation for this tube-making process. The CADFORM system applied an elastic-plastic stress-strain analysis and evaluate edge buckling by using a simplified model of the forming process. The results can also be visualised graphically. The calculated longitudinal strain is obtained by considering the deformation of lateral elements and takes into account the reduction in strains due to the fin-pass roll. These calculated strains correspond quite well with the experimental results. Using the calculated strains, the stresses in the strip can be estimated. The addition of the fin-pass roll reduction significantly reduces the longitudinal compressive stress and therefore effectively suppresses edge buckling. If the calculated longitudinal stress is controlled, by altering the forming flower pattern so it does not exceed the buckling stress within the material, then the occurrence of edge buckling can be avoided. CADFORM predicts the occurrence of edge buckling of the strip in tube-making and uses this information to suggest an appropriate flower pattern and forming conditions which will suppress the occurrence of the edge buckling.
Resumo:
Cystic fibrosis (CF) is a genetic disorder caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) for which there is no overall effective treatment. Recent work indicates tissue transglutaminase (TG2) plays a pivotal intracellular role in proteostasis in CF epithelia and that the pan TG inhibitor cysteamine improves CFTR stability. Here we show TG2 has another role in CF pathology linked with TGFβ1 activation and signalling, induction of epithelial-mesenchymal transition (EMT), CFTR stability and induction of matrix deposition. We show that increased TG2 expression in normal and CF bronchial epithelial cells increases TGFβ1 levels, promoting EMT progression, and impairs tight junctions as measured by Transepithelial Electric Resistance (TEER) which can be reversed by selective inhibition of TG2 with an observed increase in CFTR stability. Our data indicate that selective inhibition of TG2 provides a potential therapeutic avenue for reducing fibrosis and increasing CFTR stability in CF.
Resumo:
Purpose: Recent studies indicate that ocular and scleral rigidity is pertinent to our understanding of glaucoma, age related macular degeneration and the development and pathogenesis of myopia. The principal method of measuring ocular rigidity is by extrapolation of data from corneal indentation tonometry (Ko) using Friedenwald’s transformation algorithms. Using scleral indentation (Schiotz tonometry) we assess whether regional variations in resistance to indentation occur in vivo across the human anterior globe directly, with reference to the deflection of Schiotz scale readings. Methods: Data were collected from both eyes of 26 normal young adult subjects with a range of refractive error (mean spherical equivalent ± S.D. of -1.77 D ± 3.28 D, range -10.56 to +4.38 D). Schiotz tonometry (5.5 g & 7.5 g) was performed on the cornea and four scleral quadrants; supero-temporal (ST) and -nasal (SN), infero-temporal (IT) and -nasal (IN) approximately 8 mm posterior to the limbus. Results: Values of Ko (mm3)-1 were consistent with those previously reported (mean 0.0101 ± 0.0082, range 0.0019–0.0304). In regards to the sclera, significant differences (p < 0.001) were found across quadrants with indentation readings for both loads between means for the cornea and ST; ST and SN; ST and IT, ST and IN. Mean (±S.D.) scale readings for 5.5 g were: cornea 5.93 ± 1.14, ST 8.05 ± 1.58, IT 7.03 ± 1.86, SN 6.25 ± 1.10, IN 6.02 ± 1.49; and 7.5 g: cornea 9.26 ± 1.27, ST 11.56 ± 1.65, IT 10.31 ± 1.74, SN 9.91 ± 1.20, IN 9.50 ± 1.56. Conclusions: Significant regional variation was found in the resistance of the anterior sclera to indentation produced by the Schiotz tonometer.
Resumo:
Purpose: To analyse the relationship between measured intraocular pressure (IOP) and central corneal thickness (CCT), corneal hysteresis (CH) and corneal resistance factor (CRF) in ocular hypertension (OHT), primary open-angle (POAG) and normal tension glaucoma (NTG) eyes using multiple tonometry devices. Methods: Right eyes of patients diagnosed with OHT (n=47), normal tension glaucoma (n=17) and POAG (n=50) were assessed, IOP was measured in random order with four devices: Goldmann applanation tonometry (GAT); Pascal(R) dynamic contour tonometer (DCT); Reichert(R) ocular response analyser (ORA); and Tono-Pen(R) XL. CCT was then measured using a hand-held ultrasonic pachymeter. CH and CRF were derived from the air pressure to corneal reflectance relationship of the ORA data. Results: Compared to the GAT, the Tonopen and ORA Goldmann equivalent (IOPg) and corneal compensated (IOPcc) measured higher IOP readings (F=19.351, p<0.001), particularly in NTG (F=12.604, p<0.001). DCT was closest to Goldmann IOP and had the lowest variance. CCT was significantly different (F=8.305, p<0.001) between the 3 conditions as was CH (F=6.854, p=0.002) and CRF (F=19.653, p<0.001). IOPcc measures were not affected by CCT. The DCT was generally not affected by corneal biomechanical factors. Conclusion: This study suggests that as the true pressure of the eye cannot be determined non-invasively, measurements from any tonometer should be interpreted with care, particularly when alterations in the corneal tissue are suspected.
Resumo:
Thermal effects in uncontrolled factory environments are often the largest source of uncertainty in large volume dimensional metrology. As the standard temperature for metrology of 20°C cannot be achieved practically or economically in many manufacturing facilities, the characterisation and modelling of temperature offers a solution for improving the uncertainty of dimensional measurement and quantifying thermal variability in large assemblies. Technologies that currently exist for temperature measurement in the range of 0-50°C have been presented alongside discussion of these temperature measurement technologies' usefulness for monitoring temperatures in a manufacturing context. Particular aspects of production where the technology could play a role are highlighted as well as practical considerations for deployment. Contact sensors such as platinum resistance thermometers can produce accuracy closest to the desired accuracy given the most challenging measurement conditions calculated to be ∼0.02°C. Non-contact solutions would be most practical in the light controlled factory (LCF) and semi-invasive appear least useful but all technologies can play some role during the initial development of thermal variability models.
Resumo:
This paper presents a diagnostic and prognostic condition monitoring method for insulated-gate bipolar transistor (IGBT) power modules for use primarily in electric vehicle applications. The wire-bond-related failure, one of the most commonly observed packaging failures, is investigated by analytical and experimental methods using the on-state voltage drop as a failure indicator. A sophisticated test bench is developed to generate and apply the required current/power pulses to the device under test. The proposed method is capable of detecting small changes in the failure indicators of the IGBTs and freewheeling diodes and its effectiveness is validated experimentally. The novelty of the work lies in the accurate online testing capacity for diagnostics and prognostics of the power module with a focus on the wire bonding faults, by injecting external currents into the power unit during the idle time. Test results show that the IGBT may sustain a loss of half the bond wires before the impending fault becomes catastrophic. The measurement circuitry can be embedded in the IGBT drive circuits and the measurements can be performed in situ when the electric vehicle stops in stop-and-go, red light traffic conditions, or during routine servicing.