2 resultados para Ehrlich ascites tumor cell

em Aston University Research Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of substituted 4-(1-arylsulfonylindol-2-yl)-4-hydroxycyclohexa-2, 5-dien-1-ones (indolylquinols) has been synthesized on the basis of the discovery of lead compound 1a and screened for antitumor activity. Synthesis of this novel series was accomplished via the "one-pot" addition of lithiated (arylsulfonyl)indoles to 4,4-dimethoxycyclohexa-2,5-dienone followed by deprotection under acidic conditions. Similar methodology gave rise to the related naphtho-, 1H-indole-, and benzimidazole-substituted quinols. A number of compounds in this new series were found to possess in vitro human tumor cell line activity substantially more potent than the recently reported antitumor 4-substituted 4-hydroxycyclohexa-2,5-dien-1-ones1 with similar patterns of selectivity against colon, renal, and breast cell lines. The most potent compound in the series in vitro, 4-(1-benzenesulfonyl-6-fluoro-1H-indol- 2-yl)-4-hydroxycyclohexa-2,5-dienone (1h), exhibits a mean GI50 value of 16 nM and a mean LC50 value of 2.24 μM in the NCI 60-cell-line screen, with LC50 activity in the HCT 116 human colon cancer cell line below 10 nM. The crystal structure of the unsubstituted indolylquinol 1a exhibits two independent molecules, both participating in intermolecular hydrogen bonds from quinol OH to carbonyl O, but one OH group also interacts intramolecularly with a sulfonyl O atom. This interaction, which strengthens upon ab initio optimization, may influence the chemical environment of the bioactive quinol moiety. In vivo, significant antitumor activity was recorded (day 28) in mice bearing subcutaneously implanted MDA-MB-435 xenografts, following intraperitoneal treatment of mice with compound 1a at 50 mg/kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Esophageal cancer is the eighth most common cancer seen worldwide and is the sixth most common cause of death from cancer. The UK alone has over 8,000 new cases of esophageal cancer every year. Epidemiological studies have shown that low-dose daily intake of aspirin can decrease the incidence of esophageal cancer. However, its use as an anti-cancer drug has been restrained because of its side effects exerted through inhibition of cyclooxygenase (COX) enzymes. In our study, we have investigated the effects of a number of novel aspirin analogs on esophageal cancer cell lines. Methods: The effects of aspirin and its analogs on the viability of esophageal cancer cell lines were tested using the MTT assay. ApoSense and flow cytometric analysis were performed to examine whether aspirin analog-mediated tumor cell death is due to apoptosis or necrosis. Colorimetric assays measuring peroxidase component of cyclooxygenases were employed to screen aspirin analogs for COX inhibition. Results: Our data suggests that the anti-proliferative property of certain aspirin analogs is greater than that of aspirin itself. Benzoylsalicylates and fumaroyl diaspirin were more effective than aspirin against the oe21 squamous cell carcinoma cells and oe33 esophageal adenocarcinoma cells. Flo-1 esophageal adenocarcinoma cells showed resistance to aspirin and most of the aspirin analogs other than the benzoylsalicylates. Both diaspirin and benzoylsalicylates inhibited metabolic activity in all these esophageal cells. However, apoptosis was induced in only a small proportion. We have also shown that these aspirin analogs do not appear to inhibit COX enzymes. Conclusion: We have synthesized and characterized a number of novel aspirin analogs that are more effective against esophageal cancer cell lines than aspirin. These compounds do not exert their anti-proliferative effect through induction of apoptosis. Moreover, these analogs inability to inhibit COX enzymes suggests that they may cause fewer or no side effects compared to aspirin.