4 resultados para Ecrã

em Aston University Research Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several of OPC paste and concrete specimens, with different mix proportions, were cast against CPF and impermeable formwork (IF) and the profiles of pore structure, microhardness and scratch hardness of the cover zone were established. The chloride ingress and the depth of carbonation of the surface zone of concrete cast against CPF and IF were investigated. The main mechanisms controlling the ECR processes and the factors affecting such treatment were critically reviewed. Subsequently, as a means of restoring passivation of steel embedded in carbonated concrete, such HCP specimens were subjected to ECR. The influence of ECR on the chemistry of the pore solution and the microstructure of the surface and the steel/cement past interface zones were also studied. The main findings of this investigation were as follows: (a) The thickness of the microstructure gradient of cover concrete is significantly decreased with increasing period of water curing but is relatively unaffected by curing temperature, w/e ratio and the use of cement replacement materials. (b) The scratch hardness technique was shown to be potentially useful for characterising the microstructure and microhardness gradients of the surface zone. (c) A relationship between the microstructure gradient and mass transport properties of the surface zone was established. (d) The use of CPF resulted in a significant reduction in porosity of both the cement paste matrix and the aggregate/cement paste transition zone, and a marked improvement in the resistance of the surface zone to carbonation and the ingress of chloride ions. (e) The ECR treatment resulted in a marked densification of the pore structure and in changes to the pore solution chemistry and the cement phases of near-surface and steel/cement paste transition zones. This effect was more pronounced with current density, period of treatment and particularly with the use of sodium phosphate as an electrolyte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this paper is to combine the antenna downtilt selection with the cell size selection in order to reduce the overall radio frequency (RF) transmission power in the homogeneous High-Speed Packet Downlink (HSDPA) cellular radio access network (RAN). The analysis is based on the concept of small cells deployment. The energy consumption ratio (ECR) and the energy reduction gain (ERG) of the cellular RAN are calculated for different antenna tilts when the cell size is being reduced for a given user density and service area. The results have shown that a suitable antenna tilt and the RF power setting can achieve an overall energy reduction of up to 82.56%. Equally, our results demonstrate that a small cell deployment can considerably reduce the overall energy consumption of a cellular network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper new architectural approaches that improve the energy efficiency of a cellular radio access network (RAN) are investigated. The aim of the paper is to characterize both the energy consumption ratio (ECR) and the energy consumption gain (ECG) of a cellular RAN when the cell size is reduced for a given user density and service area. The paper affirms that reducing the cell size reduces the cell ECR as desired while increasing the capacity density but the overall RAN energy consumption remains unchanged. In order to trade the increase in capacity density with RAN energy consumption, without degrading the cell capacity provision, a sleep mode is introduced. In sleep mode, cells without active users are powered-off, thereby saving energy. By combining a sleep mode with a small-cell deployment architecture, the paper shows that the ECG can be increased by the factor n = (R/R) while the cell ECR continues to decrease with decreasing cell size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is desirable that energy performance improvement is not realized at the expense of other network performance parameters. This paper investigates the trade off between energy efficiency, spectral efficiency and user QoS performance for a multi-cell multi-user radio access network. Specifically, the energy consumption ratio (ECR) and the spectral efficiency of several common frequency domain packet schedulers in a cellular E-UTRAN downlink are compared for both the SISO transmission mode and the 2x2 Alamouti Space Frequency Block Code (SFBC) MIMO transmission mode. It is well known that the 2x2 SFBC MIMO transmission mode is more spectrally efficient compared to the SISO transmission mode, however, the relationship between energy efficiency and spectral efficiency is undecided. It is shown that, for the E-UTRAN downlink with fixed transmission power, spectral efficiency improvement results into energy efficiency improvement. The effect of SFBC MIMO versus SISO on the user QoS performance is also studied. © 2011 IEEE.