5 resultados para Economic conversion
em Aston University Research Archive
Resumo:
There is considerable concern over the increased effect of fossil fuel usage on the environment and this concern has resulted in an effort to find alternative, environmentally friendly energy sources. Biomass is an available alternative resource which may be converted by flash pyrolysis to produce a crude liquid product that can be used directly to substitute for conventional fossil fuels or upgraded to a higher quality fuel. Both the crude and upgraded products may be utilised for power generation. A computer program, BLUNT, has been developed to model the flash pyrolysis of biomass with subsequent upgrading, refining or power production. The program assesses and compares the economic and technical opportunities for biomass thermochemical conversion on the same basis. BLUNT works by building up a selected processing route from a number of process steps through which the material passes sequentially. Each process step has a step model that calculates the mass and energy balances, the utilities usage and the capital cost for that step of the process. The results of the step models are combined to determine the performance of the whole conversion route. Sample results from the modelling are presented in this thesis. Due to the large number of possible combinations of feeds, conversion processes, products and sensitivity analyses a complete set of results is impractical to present in a single publication. Variation of the production costs for the available products have been illustrated based on the cost of a wood feedstock. The effect of selected macroeconomic factors on the production costs of bio-diesel and gasoline are also given.
Resumo:
Since the oil crisis of 1973 considerable interest has been shown in the production of liquid fuels from alternative sources. In particular processes utilizing coal as the feedstock have received considerable interest. These processes can be divided into direct and indirect liquefaction and pyrolysis. This thesis describes the modelling of indirect coal liquefaction processes for the purpose of performing technical and economic assessment of the production of liquid fuels from coal and lignite, using a variety of gasification and synthesis gas liquefaction technologies. The technologies were modeled on a 'step model' basis where a step is defined as a combination of individual unit operations which together perform a significant function on the process streams, such as a methanol synthesis step or a gasification and physical gas cleaning step. Sample results of the modelling, covering a wide range of gasifiers, liquid synthesis processes and products are presented in this thesis. Due to the large number of combinations of gasifier, liquid synthesis processes, products and economic sensitivity cases, a complete set of results is impractical to present in a single publication. The main results show that methanol is the cheapest fuel to produce from coal followed by fuel alcohol, diesel from the Shell Middle Distillate Synthesis process,gasoline from Mobil Methanol to Gasoline (MTG) process, diesel from the Mobil Methanol Olefins Gasoline Diesel (MOGD) process and finally gasoline from the same process. Some variation in production costs of all the products was shown depending on type of gasifier chosen and feedstock.
Resumo:
Biomass-To-Liquid (BTL) is one of the most promising low carbon processes available to support the expanding transportation sector. This multi-step process produces hydrocarbon fuels from biomass, the so-called “second generation biofuels” that, unlike first generation biofuels, have the ability to make use of a wider range of biomass feedstock than just plant oils and sugar/starch components. A BTL process based on gasification has yet to be commercialized. This work focuses on the techno-economic feasibility of nine BTL plants. The scope was limited to hydrocarbon products as these can be readily incorporated and integrated into conventional markets and supply chains. The evaluated BTL systems were based on pressurised oxygen gasification of wood biomass or bio-oil and they were characterised by different fuel synthesis processes including: Fischer-Tropsch synthesis, the Methanol to Gasoline (MTG) process and the Topsoe Integrated Gasoline (TIGAS) synthesis. This was the first time that these three fuel synthesis technologies were compared in a single, consistent evaluation. The selected process concepts were modelled using the process simulation software IPSEpro to determine mass balances, energy balances and product distributions. For each BTL concept, a cost model was developed in MS Excel to estimate capital, operating and production costs. An uncertainty analysis based on the Monte Carlo statistical method, was also carried out to examine how the uncertainty in the input parameters of the cost model could affect the output (i.e. production cost) of the model. This was the first time that an uncertainty analysis was included in a published techno-economic assessment study of BTL systems. It was found that bio-oil gasification cannot currently compete with solid biomass gasification due to the lower efficiencies and higher costs associated with the additional thermal conversion step of fast pyrolysis. Fischer-Tropsch synthesis was the most promising fuel synthesis technology for commercial production of liquid hydrocarbon fuels since it achieved higher efficiencies and lower costs than TIGAS and MTG. None of the BTL systems were competitive with conventional fossil fuel plants. However, if government tax take was reduced by approximately 33% or a subsidy of £55/t dry biomass was available, transport biofuels could be competitive with conventional fuels. Large scale biofuel production may be possible in the long term through subsidies, fuels price rises and legislation.
Resumo:
This thesis presents a techno-economic investigation of the generation of electricity from marine macroalgae (seaweed) in the UK (Part 1), and the production of anhydrous ammonia from synthesis gas (syngas) generated from biomass gasification (Part 2). In Part 1, the study covers the costs from macroalgae production to the generation of electricity via a CHP system. Seven scenarios, which varied the scale and production technique, were investigated to determine the most suitable scale of operation for the UK. Anaerobic digestion was established as the most suitable technology for macroalgae conversion to CHP, based on a number of criteria. All performance and cost data have been taken from published literature. None of the scenarios assessed would be economically viable under present conditions, although the use of large-scale electricity generation has more potential than small-scale localised production. Part 2 covers the costs from the delivery of the wood chip feedstock to the production of ammonia. Four cases, which varied the gasification process used and the scale of production, were investigated to determine the most suitable scale of operation for the UK. Two gasification processes were considered, these were O2-enriched air entrained flow gasification and Fast Internal Circulating Fluidised Bed. All performance and cost data have been taken from published literature, unless otherwise stated. Large-scale (1,200 tpd) ammonia production using O2-enriched air entrained flow gasification was determined as the most suitable system, producing the lowest ammonia-selling price, which was competitive to fossil fuels. Large-scale (1,200 tpd) combined natural gas/biomass syngas ammonia production also generated ammonia at a price competitive to fossil fuels.
Resumo:
This paper presents an assessment of the technical and economic performance of thermal processes to generate electricity from a wood chip feedstock by combustion, gasification and fast pyrolysis. The scope of the work begins with the delivery of a wood chip feedstock at a conversion plant and ends with the supply of electricity to the grid, incorporating wood chip preparation, thermal conversion, and electricity generation in dual fuel diesel engines. Net generating capacities of 1–20 MWe are evaluated. The techno-economic assessment is achieved through the development of a suite of models that are combined to give cost and performance data for the integrated system. The models include feed pretreatment, combustion, atmospheric and pressure gasification, fast pyrolysis with pyrolysis liquid storage and transport (an optional step in de-coupled systems) and diesel engine or turbine power generation. The models calculate system efficiencies, capital costs and production costs. An identical methodology is applied in the development of all the models so that all of the results are directly comparable. The electricity production costs have been calculated for 10th plant systems, indicating the costs that are achievable in the medium term after the high initial costs associated with novel technologies have reduced. The costs converge at the larger scale with the mean electricity price paid in the EU by a large consumer, and there is therefore potential for fast pyrolysis and diesel engine systems to sell electricity directly to large consumers or for on-site generation. However, competition will be fierce at all capacities since electricity production costs vary only slightly between the four biomass to electricity systems that are evaluated. Systems de-coupling is one way that the fast pyrolysis and diesel engine system can distinguish itself from the other conversion technologies. Evaluations in this work show that situations requiring several remote generators are much better served by a large fast pyrolysis plant that supplies fuel to de-coupled diesel engines than by constructing an entire close-coupled system at each generating site. Another advantage of de-coupling is that the fast pyrolysis conversion step and the diesel engine generation step can operate independently, with intermediate storage of the fast pyrolysis liquid fuel, increasing overall reliability. Peak load or seasonal power requirements would also benefit from de-coupling since a small fast pyrolysis plant could operate continuously to produce fuel that is stored for use in the engine on demand. Current electricity production costs for a fast pyrolysis and diesel engine system are 0.091/kWh at 1 MWe when learning effects are included. These systems are handicapped by the typical characteristics of a novel technology: high capital cost, high labour, and low reliability. As such the more established combustion and steam cycle produces lower cost electricity under current conditions. The fast pyrolysis and diesel engine system is a low capital cost option but it also suffers from relatively low system efficiency particularly at high capacities. This low efficiency is the result of a low conversion efficiency of feed energy into the pyrolysis liquid, because of the energy in the char by-product. A sensitivity analysis has highlighted the high impact on electricity production costs of the fast pyrolysis liquids yield. The liquids yield should be set realistically during design, and it should be maintained in practice by careful attention to plant operation and feed quality. Another problem is the high power consumption during feedstock grinding. Efficiencies may be enhanced in ablative fast pyrolysis which can tolerate a chipped feedstock. This has yet to be demonstrated at commercial scale. In summary, the fast pyrolysis and diesel engine system has great potential to generate electricity at a profit in the long term, and at a lower cost than any other biomass to electricity system at small scale. This future viability can only be achieved through the construction of early plant that could, in the short term, be more expensive than the combustion alternative. Profitability in the short term can best be achieved by exploiting niches in the market place and specific features of fast pyrolysis. These include: •countries or regions with fiscal incentives for renewable energy such as premium electricity prices or capital grants; •locations with high electricity prices so that electricity can be sold direct to large consumers or generated on-site by companies who wish to reduce their consumption from the grid; •waste disposal opportunities where feedstocks can attract a gate fee rather than incur a cost; •the ability to store fast pyrolysis liquids as a buffer against shutdowns or as a fuel for peak-load generating plant; •de-coupling opportunities where a large, single pyrolysis plant supplies fuel to several small and remote generators; •small-scale combined heat and power opportunities; •sales of the excess char, although a market has yet to be established for this by-product; and •potential co-production of speciality chemicals and fuel for power generation in fast pyrolysis systems.